14.已知a∈R,函數(shù)f1(x)=x2,f2(x)=aln(x+2).
(Ⅰ)令f(x)=$\left\{\begin{array}{l}{{f}_{1}(x),x≤0}\\{{f}_{2}(x),x>0}\end{array}\right.$,若函數(shù)f(x)的圖象上存在兩點A、B滿足OA⊥OB(O為坐標原點),且線段AB的中點在y軸上.求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)g(x)=f1(x)+f2(x)存在兩個極值點x1、x2,求證:g(x1)+g(x2)>2.

分析 (Ⅰ)不妨設(shè)A(t,aln(t+2)),B(-t,t2),利用OA⊥OB,再分離參數(shù),即可求a的取值集合;
(Ⅱ)函數(shù)g(x)=f1(x)+f2(x)存在兩個極值點x1、x2,g′(x)=0,即2x2+4x+a=0在(-2,+∞)上存在兩個不等的實根,可得0<a<2,x1+x2=-2,x1x2=$\frac{a}{2}$,表示出g(x1)+g(x2),確定其單調(diào)性,即可證明g(x1)+g(x2)>2.

解答 解:(Ⅰ)由題意,不妨設(shè)A(t,aln(t+2)),B(-t,t2)(t>0)
∴OA⊥OB,
∴-t2+at2ln(t+2)=0,
∴a=$\frac{1}{ln(t+2)}$,
∵ln(t+2)∈(ln2,+∞),
∴a的取值集合為(0,$\frac{1}{ln2}$);
(Ⅱ)g(x)=f1(x)+f2(x)=x2+aln(x+2),
∴g′(x)=$\frac{{2x}^{2}+4x+a}{x+2}$,
∵函數(shù)g(x)存在兩個極值點x1、x2,
∴g′(x)=0,即2x2+4x+a=0在(-2,+∞)上存在兩個不等的實根,
令p(x)=2x2+4x+a,
∴△=16-8a>0且p(-2)>0,
∴0<a<2,
∵x1+x2=-2,x1x2=$\frac{a}{2}$,
∴g(x1)+g(x2)=x12+aln(x1+2)+x22+aln(x2+2)
=(x1+x22-2x1x2+aln[x1x2+2(x1+x2)+4]=aln$\frac{a}{2}$-a+4
令q(x)=xln$\frac{x}{2}$-x+4,x∈(0,2),
∴q′(x)=ln$\frac{x}{2}$<0,
∴q(x)在(0,2)上單調(diào)遞減,
∴2<aln$\frac{a}{2}$-a+4,
∴g(x1)+g(x2)>2.

點評 本題考查導數(shù)知識的運用,考查韋達定理,考查函數(shù)的單調(diào)性與極值,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.從3男1女共4名學生中選出2人參加學校組織的環(huán);顒樱瑒t女生被選中的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,點M,N分別在PB,PC上,且MN∥BC.
(Ⅰ)證明:平面AMN⊥平面PBA;
(Ⅱ)若M為PB的中點,求二面角M-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x3+ax2-a2x+3.
(Ⅰ)若a=2,求f(x)在[-1,2]上的最值;
(Ⅱ)若f(x)在(-$\frac{1}{2}$,1)上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.用1,2,3,4,5,6這六個數(shù)字組成沒有重復數(shù)字的六位數(shù),其中1,3,5三個數(shù)字互不相鄰的六位數(shù)有144個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.用數(shù)學歸納法證明$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$≥$\frac{n}{2}$(n∈N*),從“n=k(k∈N*)”到“n=k+1”時,左邊需增加的代數(shù)式為( 。
A.$\frac{1}{{2}^{k}+1}$B.$\frac{1}{{2}^{k+1}}$
C.$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k+1}}$D.$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.為了得到函數(shù)y=cos($\frac{1}{2}$x+$\frac{π}{3}$)的圖象,只要把y=cos$\frac{1}{2}x$的圖象上所有的點( 。
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向左平移$\frac{2π}{3}$個單位長度D.向右平移$\frac{2π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一個棱長為2的正方體,它的頂點都在球面上,這個球的體積是( 。
A.B.2$\sqrt{3}$πC.4$\sqrt{3}$πD.12π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列四個函數(shù)中,既是定義域上的奇函數(shù)又在區(qū)間(0,1)內(nèi)單調(diào)遞增的是( 。
A.y=x3B.y=cosxC.y=ln$\frac{1-x}{1+x}$D.y=ex

查看答案和解析>>

同步練習冊答案