17.下列命題正確的是( 。
A.圓柱的軸是經(jīng)過圓柱上、下底面圓的圓心的直線
B.圓柱的母線是連接圓柱上底面和下底面上一點(diǎn)的直線
C.矩形較長的一條邊所在直線才可以作為旋轉(zhuǎn)軸
D.有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱

分析 根據(jù)圓柱,棱柱的幾何特征,逐一分析四個(gè)結(jié)論的真假,可得答案.

解答 解:圓柱的軸是經(jīng)過圓柱上、下底面圓的圓心的直線,故A正確;
圓柱的母線是連接圓柱上底面和下底面上一點(diǎn)的與旋轉(zhuǎn)軸平行的直線,故B錯(cuò)誤;
矩形兩條邊所在直線均可以作為旋轉(zhuǎn)軸,故C錯(cuò)誤;
有兩個(gè)面平行,其余各面都是平行四邊形的幾何體不一定是棱柱,如下圖所示,故D錯(cuò)誤;

故選:A

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了圓柱,棱柱的幾何特征,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.化簡(jiǎn)(log43+log49)(log32+log38)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$y=\frac{{2{x^2}-3x}}{e^x}$的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足:b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn,則{bn}的前n項(xiàng)和為$\frac{3}{2}$(1-$\frac{1}{{3}^{n}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,-1),若向量$\overrightarrow c$滿足$(\overrightarrow c+\overrightarrow a)∥\overrightarrow b$,$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow c$,則$\overrightarrow c$=( 。
A.(1,3)B.(-1,3)C.(-1,-3)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)z=kx+y,其中實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{2x-y-4≤0}\end{array}\right.$若z的最大值為12,則實(shí)數(shù)k=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=$\frac{\sqrt{2-x}}{ln(x-1)}$的定義域是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=$\frac{1}{2}$,an+2SnSn-1=0(n≥2)
(1)求an和Sn
(2)求證:S12+S22+S32+…+Sn2≤$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=-x2+2x+3在區(qū)間[-2,3]上的最大值為4,最小值為-5.

查看答案和解析>>

同步練習(xí)冊(cè)答案