A. | 4 | B. | 2 | C. | 1 | D. | 0 |
分析 把已知函數(shù)解析式變形,可得f(x)=[(x-1)2-1]sin(x-1)+x-1+2,令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),結(jié)合g(2-x)+g(x)=0,可得g(x)關(guān)于(1,0)中心對稱,則f(x)在[-1,3]上關(guān)于(1,2)中心對稱,從而求得M+m的值.
解答 解:∵f(x)=(x2-2x)sin(x-1)+x+1=[(x-1)2-1]sin(x-1)+x-1+2
令g(x)=(x-1)2sin(x-1)-sin(x-1)+(x-1),
而g(2-x)=(x-1)2sin(1-x)-sin(1-x)+(1-x),
∴g(2-x)+g(x)=0,
則g(x)關(guān)于(1,0)中心對稱,則f(x)在[-1,3]上關(guān)于(1,2)中心對稱.
∴M+m=4.
故選:A.
點評 本題考查函數(shù)在閉區(qū)間上的最值,考查函數(shù)奇偶性性質(zhì)的應(yīng)用,考查數(shù)學轉(zhuǎn)化思想方法,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{4}{5}$ | B. | -$\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{5}{36}$ | C. | $\frac{3}{18}$ | D. | $\frac{1}{72}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com