【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
【答案】(1)見解析;(2)乙的成績(jī)的平均分比甲的成績(jī)的平均分高,乙同學(xué)的成績(jī)比甲同學(xué)的成績(jī)更穩(wěn)定集中 ;(3).
【解析】
(1)直接由莖葉圖求解.
(2)由莖葉圖中數(shù)據(jù)的集中程度直接判斷。
(3)甲同學(xué)的不低于140分的成績(jī)有2個(gè)設(shè)為a,b,乙同學(xué)的不低于140分的成績(jī)有3個(gè),設(shè)為c,d,e,即可求得任意選出2個(gè)成績(jī)有10種,其中2個(gè)成績(jī)分屬不同同學(xué)的情況有6種,利用古典概型概率公式即可得解。
(1)甲的成績(jī)的中位數(shù)是119,乙的成績(jī)的中位數(shù)是128,
同學(xué)乙的成績(jī)的頻率分布直方圖如下:
(2)從莖葉圖可以看出,乙的成績(jī)的平均分比甲的成績(jī)的平均分高,乙同學(xué)的成績(jī)比甲同學(xué)的成績(jī)更穩(wěn)定集中 .
(3)甲同學(xué)的不低于140分的成績(jī)有2個(gè)設(shè)為a,b,
乙同學(xué)的不低于140分的成績(jī)有3個(gè),設(shè)為c,d,e ,
現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī)有:
(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10種,
其中2個(gè)成績(jī)分屬不同同學(xué)的情況有:
(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)共6種,
因此事件A發(fā)生的概率P(A)= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)經(jīng)典名著,其中有這樣一個(gè)問題:“今有圓材,埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長(zhǎng)一尺.問徑幾何?”其意為:今有-圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該木材,鋸口深一寸,鋸道長(zhǎng)-尺.問這塊圓柱形木材的直徑是多少?現(xiàn)有長(zhǎng)為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內(nèi)的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻體中的體積約為__________立方寸.(結(jié)果保留整數(shù))
注:l丈=10尺=100寸,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)為了解人們某個(gè)產(chǎn)品的使用情況是否與性別有關(guān),在網(wǎng)上進(jìn)行了問卷調(diào)查,在調(diào)查結(jié)果中隨機(jī)抽取了50份進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
使用 | 15 | 5 | 20 |
不使用 | 10 | 20 | 30 |
合計(jì) | 25 | 25 | 50 |
(1)請(qǐng)根據(jù)調(diào)查結(jié)果分①析:你有多大把握認(rèn)為使用該產(chǎn)品與性別有關(guān);
(2)在不使用該產(chǎn)品的人中,按性別用分層抽樣抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人參加某項(xiàng)活動(dòng),求這2人中恰有一位女性的概率.
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推進(jìn)“千村百鎮(zhèn)計(jì)劃”,年月某新能源公司開展“電動(dòng)莆田 綠色出行”活動(dòng),首批投放臺(tái)型新能源車到莆田多個(gè)村鎮(zhèn),供當(dāng)?shù)卮迕衩赓M(fèi)試用三個(gè)月.試用到期后,為了解男女試用者對(duì)型新能源車性能的評(píng)價(jià)情況,該公司要求每位試用者填寫一份性能綜合評(píng)分表(滿分為分).最后該公司共收回份評(píng)分表,現(xiàn)從中隨機(jī)抽取份(其中男、女的評(píng)分表各份)作為樣本,經(jīng)統(tǒng)計(jì)得到如下莖葉圖:
(1)求個(gè)樣本數(shù)據(jù)的中位數(shù);
(2)已知個(gè)樣本數(shù)據(jù)的平均數(shù),記與的最大值為.該公司規(guī)定樣本中試用者的“認(rèn)定類型”:評(píng)分不小于的為“滿意型”,評(píng)分小于的為“需改進(jìn)型”.
①請(qǐng)根據(jù)個(gè)樣本數(shù)據(jù),完成下面列聯(lián)表:
根據(jù)列聯(lián)表判斷能否有的把握認(rèn)為“認(rèn)定類型”與性別有關(guān)?
②為做好車輛改進(jìn)工作,公司先從樣本“需改進(jìn)型”的試用者按性別用分層抽樣的方法,從中抽取8人進(jìn)行回訪,根據(jù)回訪意見改進(jìn)車輛后,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行二次試用,記這3人中男性人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面,為中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風(fēng)景區(qū),P點(diǎn)在弧BC上,現(xiàn)欲在風(fēng)景區(qū)中規(guī)劃三條三條商業(yè)街道PQ、QR、RP,要求街道PQ與AB垂直,街道PR與AC垂直,直線PQ表示第三條街道。
(1)如果P位于弧BC的中點(diǎn),求三條街道的總長(zhǎng)度;
(2)由于環(huán)境的原因,三條街道PQ、PR、QR每年能產(chǎn)生的經(jīng)濟(jì)效益分別為每千米300萬(wàn)元、200萬(wàn)元及400萬(wàn)元,問:這三條街道每年能產(chǎn)生的經(jīng)濟(jì)總效益最高為多少?(精確到1萬(wàn)元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的焦點(diǎn)坐標(biāo)分別為,,為橢圓上一點(diǎn),滿足且
(1) 求橢圓的標(biāo)準(zhǔn)方程:
(2) 設(shè)直線與橢圓交于兩點(diǎn),點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論f(x)的單調(diào)性;
(2)若恰有兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com