14.對于橢圓$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{m-1}$=1,長軸在y軸上,若焦距為4,則m等于( 。
A.4B.7C.14D.38

分析 由題意可得c=2,且m-1>9-m>0,(m-1)-(9-m)=4,計算即可得到所求值.

解答 解:由題意可得m-1>9-m>0,
解得5<m<9,
由焦距為4,可得2c=4,即c=2,
可得(m-1)-(9-m)=4,
解得m=7.
故選:B.

點評 本題考查橢圓的方程和性質(zhì),主要是長軸和焦距的運用,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若橢圓的方程$\frac{x^2}{10-a}+\frac{y^2}{a-2}$=1,且此橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,則實數(shù)a=$\frac{14}{3}$或$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知sinα=$\frac{5}{13}$,且$\frac{π}{2}$<α<π,則tan2α=$-\frac{120}{119}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.$\underset{lim}{x→0}$$\frac{sin5x}{2x}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=$\frac{{x}^{2}}{2}$-klnx,k∈R.
(1)求f(x)的單調(diào)性;
(2)判斷方程f(x)=0在區(qū)間(1,$\sqrt{e}$)上是否有解?若有解,說明解的個數(shù)及依據(jù);若無解,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.集合A={x|ax2-3x+2≤0}只有一個元素,則a的值為( 。
A.$\frac{9}{8}$B.$\frac{7}{8}$C.$\frac{9}{7}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={0,1,2,3},B={x|x2-2x-3<0},則A∩B中元素的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)命題p:?x>0,xex>0,則¬p為( 。
A.?x≤0,xex≤0B.?x0≤0,x0ex0≤0C.?x>0,xex≤0D.?x0>0,x0ex0≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={x∈N|5+4x-x2>0},B={y|y=4-x,x∈A},則A∪B等于( 。
A.BB.{1,2,4}C.{1,2,3,4}D.{-1,0,1,2,3,4}

查看答案和解析>>

同步練習(xí)冊答案