分析 (Ⅰ)由點(diǎn)(2,0)在橢圓C上,可得a=2,又$e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,b=$\sqrt{{a}^{2}-{c}^{2}}$,解出即可得出.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),B'(x2,-y2),Q(n,0).設(shè)直線AB:y=k(x-1)(k≠0).與橢圓方程聯(lián)立得:(1+4k2)x2-8k2x+4k2-4=0.直線AB'的方程為$y-{y_1}=\frac{{{y_1}+{y_2}}}{{{x_1}-{x_2}}}(x-{x_1})$,令y=0,解得n,又y1=k(x1-1),y2=k(x2-1),再利用根與系數(shù)的關(guān)系即可得出.
解答 解:(Ⅰ)因?yàn)辄c(diǎn)(2,0)在橢圓C上,所以a=2.
又因?yàn)?e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}$,所以$c=\sqrt{3}$.
所以$b=\sqrt{{a^2}-{c^2}}=1$.
所以橢圓C的標(biāo)準(zhǔn)方程為:$\frac{x^2}{4}+{y^2}=1$. …(5分)
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),B'(x2,-y2),Q(n,0).
設(shè)直線AB:y=k(x-1)(k≠0).…(6分)
聯(lián)立y=k(x-1)和x2+4y2-4=0,得:(1+4k2)x2-8k2x+4k2-4=0.
所以${x_1}+{x_2}=\frac{{8{k^2}}}{{1+4{k^2}}}$,${x_1}{x_2}=\frac{{4{k^2}-4}}{{1+4{k^2}}}$.…(8分)
直線AB'的方程為$y-{y_1}=\frac{{{y_1}+{y_2}}}{{{x_1}-{x_2}}}(x-{x_1})$,…(9分)
令y=0,解得$n=-\frac{{{y_1}({x_1}-{x_2})}}{{{y_1}+{y_2}}}+{x_1}=\frac{{{x_1}{y_2}+{x_2}{y_1}}}{{{y_1}+{y_2}}}$…(11分)
又y1=k(x1-1),y2=k(x2-1),
所以$n=\frac{{{x_1}{x_2}-({x_1}+{x_2})}}{{{x_1}+{x_2}-2}}=4$.…(13分)
所以直線AB'與x軸的交點(diǎn)Q是定點(diǎn),坐標(biāo)為Q(4,0).…(14分)
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題、一元二次方程的根與系數(shù)的關(guān)系、直線經(jīng)過(guò)定點(diǎn)問(wèn)題,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
高一 | 高二 | 高三 | |
女生 | 373 | m | n |
男生 | 377 | 370 | p |
A. | 8 | B. | 16 | C. | 28 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,4] | B. | (-∞,7] | C. | [-$\frac{1}{2}$,4] | D. | [-$\frac{1}{2}$,7] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com