2.如圖,A、B、C、D、E在圓周上,且 A B∥C E,A E∥BD,BD交C E于點(diǎn)F,過 A點(diǎn)的圓的切線交C E的延長線于 P,若 PE=CF=1,P A=2.
(1)求 A E的長;
(2)求證:點(diǎn)F是 BD的中點(diǎn).

分析 (1)利用△PAE∽△EB A,及切割線定理求AE的長;
(2)利用相交弦定理證明BF=FD,即可證明點(diǎn)F是 BD的中點(diǎn).

解答 (1)解:∵PA2=PC•P E,PA=2,PE=1,∴PC=4,(2分)
又∵P E=CF=1,∴EF=2,
∵∠PA E=∠EB A,∠PE A=∠EA B,
∴△PAE∽△EB A,∴$\frac{{{P}{E}}}{{{A}{E}}}=\frac{{{A}{E}}}{{{A}{B}}}$,(4分)
∴AE2=P E•A B=2,∴${A}{E}=\sqrt{2}$.(5分)
(2)證明:∵${B}F={A}{E}=\sqrt{2}$,EF=2,而 EF•FC=BF•FD,(8分)
∴$DF=\frac{2•1}{{\sqrt{2}}}=\sqrt{2}$,∴BF=FD,
∴點(diǎn)F是 BD的中點(diǎn).(10分)

點(diǎn)評 本題考查切割線定理、相交弦定理,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實(shí)數(shù)a,b,c滿足a+b+c=0,a2+b2+c2=1,則a的最大值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{2}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.點(diǎn)C是線段AB的中點(diǎn),$\overrightarrow{AB}$=λ$\overrightarrow{AC}$,那么λ等于( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若不等式x2+ax+b<0的解集為(-1,2),則ab的值為(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=x+$\frac{k}{x}$在[1,3]上的最小值為2$\sqrt{k}$,則正數(shù)k的最大值與最小值之和為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),若P(ξ>1)=0.02,則P(-1≤ξ≤1)=(  )
A.0.04B.0.64C.0.86D.0.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖的程序框圖,若輸入N=2016,則輸出S等于(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2013}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2t\\ y=t+\frac{1}{2}\end{array}$(t為參數(shù)),直線l和圓C交于A,B兩點(diǎn),P是圓C上不同于A,B的任意一點(diǎn).
(1)求圓心的極坐標(biāo);
(2)求點(diǎn)P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某班主任對全班50名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,數(shù)據(jù)如表
認(rèn)為作業(yè)量大認(rèn)為作業(yè)量不大總計(jì)
男生18927
女生81523
總計(jì)262450
則推斷“學(xué)生的性別與認(rèn)為作業(yè)量大有關(guān)”的把握大約為( 。
附:Χ2=$\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}•{n_{2+}}•{n_{+1}}•{n_{+2}}}}$.
獨(dú)立性檢驗(yàn)臨界值表
P(χ2≥k)0.050.0100.0050.001
K3.8416.6357.87910.828
A.99%B.95%C.90%D.不確定

查看答案和解析>>

同步練習(xí)冊答案