20.若函數(shù)y=f(x)的圖象上存在不同兩點M、N關(guān)于原點對稱,則稱點對[M,N]是函數(shù)y=f(x)的一對“和諧點對”(點對[M,N]與[N,M]看作同一對“和諧點對”).已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤0}\\{|lnx|,x>0}\end{array}\right.$則此函數(shù)的“和諧點對”有(  )
A.0對B.1對C.2對D.4對

分析 令f(x)+f(-x)=0,根據(jù)圖象判斷方程的根的個數(shù),得出結(jié)論.

解答 解:若f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤0}\\{-lnx,0<x<1}\\{lnx,x≥1}\end{array}\right.$,
令f(x)+f(-x)=0,
若0<x<1,則-lnx-x3+3x=0,即lnx=-x3+3x,
作出y=lnx與y=-x3+3x的函數(shù)圖象,

由圖象可知兩函數(shù)在(0,1)上無交點,
若x≥1,則lnx-x3+3x=0,即lnx=x3-3x,
作出y=lnx與y=x3-3x的函數(shù)圖象,

由圖象可知兩函數(shù)在(1,+∞)上有1個交點,
所以,f(x)只有1對“和諧點對”.
故選B.

點評 本題考查了方程根與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
由表中的數(shù)據(jù)得線性回歸方程$\widehat{y}$=bx+$\widehat{a}$中的b=-20,預(yù)測當(dāng)產(chǎn)品價格定為9.5(元)時,銷量為60件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{ an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),則Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長軸長為4,左、右焦點分別為F1,F(xiàn)2,過F1的動直線l交C于A,B兩點,若|AF2|+|BF2|的最大值為7,則b的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx(x∈R),又f(α)=2,f(β)=2,且|α-β|的最小值是$\frac{π}{2}$,則正數(shù)ω的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}中,a1=1,且a1,a2,a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項公式及其前n項和Sn;
(2)設(shè)${b_n}={2^{{{({-1})}^n}{a_n}}}$,求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知A(3,5,2),B(-1,2,1),把$\overrightarrow{AB}$按向量$\overrightarrow{a}$=(2,1,1)平移后所得的向量是( 。
A.(-4,-3,-1)B.(-4,-3,0)C.(-2,-1,0)D.(-2,-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(Ⅰ)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強的線性相關(guān)關(guān)系,試求y關(guān)于x的回歸方程;
(Ⅱ)政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅的銷售均價.
(從3月到7月的參考數(shù)據(jù):$\sum_{i=1}^{5}$xi=25,$\sum_{i=1}^{5}$yi=5.36,$\sum_{i=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)=0.64;回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距的最小二乘法估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知某海濱浴場的海浪高度(單位:米)是時間(單位:小時,0≤t≤24)的函數(shù),記作y=f(t),如表是某日各時的浪高數(shù)據(jù):
 t(時) 0 1215  18 2124 
 y(米) 1.5 1.00.5  1.0 1.5 1.0 0.51.0 1.5 
(Ⅰ)在如圖的網(wǎng)格中描出所給的點;
(Ⅱ)觀察圖,從y=at+b,y=at2+bt+c,y=Acos(ωx+p)中選擇一個合適的函數(shù)模型,并求出該擬合模型的解析式;
(Ⅲ)依據(jù)規(guī)定,當(dāng)海浪高度高于1.25米時蔡對沖浪愛好者開放,請依據(jù)(Ⅱ)的結(jié)論判斷一天內(nèi)的8:00到20:00之間有多長時間可供沖浪愛好者進(jìn)行活動.

查看答案和解析>>

同步練習(xí)冊答案