6.已知曲線C的極坐標(biāo)方程是ρ=4sinθ,設(shè)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t-1}\\{y=2t+1}\end{array}\right.$(t為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C的交點(diǎn)是M,N,O為坐標(biāo)原點(diǎn),求△OMN的面積.

分析 (I)極坐標(biāo)方程兩邊同乘ρ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系得出直角坐標(biāo)方程;
(II)把直線的參數(shù)方程代入曲線C的普通方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義計(jì)算|MN|,利用距離公式計(jì)算O到直線l的距離,代入三角形的面積公式計(jì)算.

解答 解:(I)∵曲線C的極坐標(biāo)方程是ρ=4sinθ,∴ρ2=4ρsinθ,
∴曲線C的直角坐標(biāo)方程為x2+y2=4y,
(II)直線l的普通方程為2x-y+3=0,
∴點(diǎn)O到直線l的距離d=$\frac{3}{\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$.
直線l的標(biāo)準(zhǔn)參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{5}}{5}t}\\{y=1+\frac{2\sqrt{5}}{5}t}\end{array}\right.$(t為參數(shù)),
把$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{5}}{5}t}\\{y=1+\frac{2\sqrt{5}}{5}t}\end{array}\right.$(t為參數(shù))代入x2+y2=4y得:5t2-6$\sqrt{5}$t-10=0,
設(shè)M,N對(duì)應(yīng)的參數(shù)分別為t1,t2,則t1+t2=$\frac{6\sqrt{5}}{5}$,t1t2=-2.
∴|MN|=$\sqrt{\frac{36}{5}+8}$=$\frac{2\sqrt{19}}{\sqrt{5}}$,
∴△OMN的面積為$\frac{1}{2}$|MN|•d=$\frac{1}{2}$×$\frac{2\sqrt{19}}{\sqrt{5}}$×$\frac{3\sqrt{5}}{5}$=$\frac{\sqrt{19}}{5}$.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程,參數(shù)方程與普通方程的轉(zhuǎn)化,參數(shù)的幾何意義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知拋物線方程為:x=$\frac{1}{4}$y2,其準(zhǔn)線方程為x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且x∈=(-2,0)時(shí),f(x)=2x+$\frac{1}{2}$,則f(2017)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)C、D、E是線段AB的四等分點(diǎn),O為直線AB外的任意一點(diǎn),若$\overrightarrow{OC}$+$\overrightarrow{OD}$+$\overrightarrow{OE}$=m($\overrightarrow{OA}$+$\overrightarrow{OB}$),則實(shí)數(shù) m的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.有4人排成一排照相,由于甲乙兩人關(guān)系比較好,要求站在一起,則4人站法種數(shù)( 。
A.12B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標(biāo)系中,點(diǎn)O(0,0),P(4,3),將向量$\overrightarrow{OP}$繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)$\frac{2π}{3}$后得向量$\overrightarrow{OQ}$,則點(diǎn)Q的坐標(biāo)是( 。
A.($\frac{{-3+4\sqrt{3}}}{2}$,$\frac{{-4+3\sqrt{3}}}{2}$)B.($\frac{{-3+4\sqrt{3}}}{2}$,$\frac{{-4-3\sqrt{3}}}{2}$)C.($\frac{{-4+3\sqrt{3}}}{2}$,$\frac{{-3-4\sqrt{3}}}{2}$)D.($\frac{{-4-3\sqrt{3}}}{2}$,$\frac{{-3+4\sqrt{3}}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosB=2a-$\sqrt{3}$b.
(Ⅰ)求C;
(Ⅱ)若a=2,△ABC的面積為$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且過點(diǎn)(1,$\frac{3}{2}$),
(1)求橢圓E的方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M;
(i)設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證k1k2為定值;
(ii)設(shè)過點(diǎn)M垂直于PB的直線為m,求證:直線m過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=($\frac{1}{2}$)|x|-sin|x|在區(qū)間[-π,π]上的零點(diǎn)個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案