分析 由題意設(shè)P(x,y),則$\sqrt{(x+c)^{2}+{y}^{2}}•\sqrt{(x-c)^{2}+{y}^{2}}$=a2,即[(x+c)2+y2]•[(x-c)2+y2]=a4,對4個(gè)選項(xiàng)加以驗(yàn)證,即可得出結(jié)論.
解答 解:由題意設(shè)P(x,y),則$\sqrt{(x+c)^{2}+{y}^{2}}•\sqrt{(x-c)^{2}+{y}^{2}}$=a2,
即[(x+c)2+y2]•[(x-c)2+y2]=a4,
①當(dāng)a=0,c=1時(shí),軌跡為兩個(gè)點(diǎn)F1(-1,0),F(xiàn)2(1,0),正確;
②a=c,(0,0)代入,方程成立則曲線過原點(diǎn),即故②正確;
③∵(|PF1|+|PF2|)min=2c,(當(dāng)且僅當(dāng),|PF1|=|PF2|=c時(shí)取等號),
∴(|PF1||PF2|)min=c2,
∴若0<a<c,則曲線不存在,故③正確;
④把方程中的x被-x代換,方程不變,故此曲線關(guān)于y軸對稱;
把方程中的y被-y 代換,方程不變,故此曲線關(guān)于x軸對稱;
把方程中的x被-x代換,y被-y 代換,方程不變,
故此曲線關(guān)于原點(diǎn)對稱;故④正確;
故答案為:①②③④.
點(diǎn)評 本題考查新定義,考查學(xué)生分析解決問題的能力,正確運(yùn)用新定義是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$ | B. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$ | ||
C. | 若λ$\overrightarrow{a}$=0(λ為實(shí)數(shù)),則λ=0 | D. | 若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\overrightarrow{DA}$ | B. | 2$\overrightarrow{AD}$ | C. | 2$\overrightarrow{BD}$ | D. | 2$\overrightarrow{DB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com