某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表
廣告費用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為
 
(保留一位小數(shù)).
參考公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
考點:線性回歸方程
專題:概率與統(tǒng)計
分析:首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點,根據(jù)線性回歸直線過樣本中心點,求出方程中的一個系數(shù),得到線性回歸方程,把自變量為7代入,預報出結(jié)果.
解答: 解:∵
.
x
=
2+3+4+5
4
=3.5,
.
y
=
26+39+49+54
4
=42,
∵數(shù)據(jù)的樣本中心點在線性回歸直線上,
回歸方程
y
=
b
x+
a
中的b為9.4,
∴42=9.4×3.5+a,
∴a=9.1,
∴線性回歸方程是y=9.4x+9.1,
∴廣告費用為6萬元時銷售額為9.4×6+9.1=65.5,
故答案為:65.5.
點評:本題考查求回歸方程,考查利用回歸方程進行預測,解題的關(guān)鍵是根據(jù)回歸方程必過樣本中心點,求出回歸系數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

直線x+y-1=0與圓(x-1)2+(y-2)2=R2(R>0)相切,則R的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(lg2+lg5)+log23log34+lne=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是計算
1
1×2
+
1
2×3
+…+
1
9×10
的值的程序框圖,其中在判斷框中應填入的條件是:i<
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}和{bn}的通項公式分別為an=3n+5,bn=4n+8,則它們的公共項組成的新數(shù)列{cn}的通項公式為cn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“m∈(2,6)”是“方程
x2
m-2
+
y2
6-m
=1為橢圓方程”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)奇函數(shù)f(x)在(0,+∞)上為減函數(shù),且f(1)=0,則不等式
f(x)-f(-x)
x
<0的解集為( 。
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(1,+∞)
C、(-∞,-1)∪(0,1)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成角為60°,E為PC的中點,則異面直線PA與BE所成角為( 。
A、90°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<2π)圖象上的一個最高點是(2,
2
),由這個最高點到相鄰的最低點圖象與x軸的交點為(6,0),則f(x)=( 。
A、
2
sin(
π
4
x+
π
4
B、
2
sin(
π
4
x-
π
8
C、
2
sin(
π
8
x+
π
4
D、
2
sin(
π
8
x-
π
4

查看答案和解析>>

同步練習冊答案