【題目】菱形的對角線互相垂直;正方形的對角線互相垂直;正方形是菱形。

寫一個(gè)三段論形式的推理,則作為大前提,小前提和結(jié)論的分別為(

A. ②③① B. ①③② C. ①②③ D. ③②①

【答案】B

【解析】分析:由題意,根據(jù)三段論的形式大前提,小前提,結(jié)論直接寫出答案即可.

詳解:用三段論的形式寫出的演繹推理是:

大前提①菱形的對角線互相垂直,

小前提③正方形是菱形

結(jié)論②正方形的對角線互相垂直,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的一種電子產(chǎn)品的成本是每件500元,計(jì)劃在今后的3年內(nèi),使成本降低到每件256元,則平均每年成本應(yīng)降低(  )

A. 10% B. 15% C. 20% D. 25%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績中,隨機(jī)抽取了名學(xué)生的成績得到頻率分布直方圖如下:

1根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;

2若用分層抽樣的方法從分?jǐn)?shù)在的學(xué)生中共抽取人,該人中成績在的有幾人?

32中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高一新生數(shù)學(xué)科學(xué)習(xí)情況,用系統(tǒng)抽樣方法從編號為001,002,003,…,700的學(xué)生中抽取14人,若抽到的學(xué)生中編號最大的為654,則被抽到的學(xué)生中編號最小的為( )

A. 002 B. 003 C. 004 D. 005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各等式:55=3125,56=15625,57=78125,…,則52018的末四位數(shù)字為__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人被稱為微商.為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

1根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?

2現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù);

32中抽取的5人中再隨機(jī)抽取3人贈送200元的護(hù)膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.

參考公式:,其中n=a+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某校高三年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖.

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高三學(xué)生有240人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);

(3)估計(jì)這次學(xué)生參加社區(qū)服務(wù)人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題“三角形的內(nèi)角中最多只有一個(gè)內(nèi)角是鈍角”時(shí),應(yīng)先假設(shè)(

A. 沒有一個(gè)內(nèi)角是鈍角 B. 有兩個(gè)內(nèi)角是鈍角

C. 有三個(gè)內(nèi)角是鈍角 D. 至少有兩個(gè)內(nèi)角是鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角如圖所示,其中,分別是,邊上的中點(diǎn).現(xiàn)沿折痕翻折使得與平面外一點(diǎn)重合,得到如圖2所示的幾何體.

1證明:平面平面;

2記平面與平面的交線為探究直線是否平行若平行,請給出證明,若不平行請說明理由

查看答案和解析>>

同步練習(xí)冊答案