【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績中,隨機(jī)抽取了名學(xué)生的成績得到頻率分布直方圖如下:

1根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;

2若用分層抽樣的方法從分?jǐn)?shù)在的學(xué)生中共抽取人,該人中成績?cè)?/span>的有幾人?

32中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在人的概率.

【答案】12人;3.

【解析】

試題分析:1根據(jù)頻率分布直方圖,樣本的平均數(shù)為2分?jǐn)?shù)在頻數(shù)比為,按照該比例抽取即得抽取的人中成績?cè)?/span>的人數(shù);3抽取的人中分?jǐn)?shù)在的有人記為,分?jǐn)?shù)在的人有人,記為,列舉出所有可能的取法,找出分?jǐn)?shù)在各一人的事件即可求得其概率.

試題解析:1由頻率分布直方圖,得該校高三學(xué)生本次數(shù)學(xué)考試的平均分為

0.0050×20×40+0.0075×20×60+0.0075×20×80+0.0150×20×100

+0.0125×20×120+0.0025×20×14092. 4分

2樣本中分?jǐn)?shù)在[30,50和[130,150]的人數(shù)分別為6人和3人

所以抽取的3人中分?jǐn)?shù)在[130,150]的人有 8分

32知:抽取的3人中分?jǐn)?shù)在[30,50的有2人,記為

分?jǐn)?shù)在[130,150]的人有1人,記為,從中隨機(jī)抽取2人

總的情形有三種.

而分?jǐn)?shù)在[30,50和[130,150]各1人的情形有兩種

故所求概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識(shí)增強(qiáng)環(huán)保意識(shí),某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識(shí)與專業(yè)有關(guān)?

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

乙班

30

總計(jì)

60

(2)為參加上級(jí)舉辦的環(huán)保知識(shí)競賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過預(yù)選非優(yōu)秀的同學(xué)得80分以上通過預(yù)選,若每位同學(xué)得60分以上的概率為,得80分以上的概率為,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機(jī)變量X表示甲班通過預(yù)選的人數(shù),

求X的分布列及期望E(X).

附: , n=a+b+c+d

P(K2>k0)

0.100

0.050

0.025

0.010[

0.005

k0

2.706

3.84

5.02

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x°C

10

11

13

12

8

發(fā)芽數(shù)y

23

25

30

26

16

1請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程其中已計(jì)算出;

2若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)選取檢驗(yàn)數(shù)據(jù)是12月1日與12月5日的兩組數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問2中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明命題ab∈N,ab能被2整除,則a,b中至少有一個(gè)能被2整除,那么反設(shè)的內(nèi)容是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三段論推理“①矩形是平行四邊形;②正方形是矩形;③正方形是平行四邊形”中的小前提是 (填寫序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某電子元件進(jìn)行壽命追蹤調(diào)查,所得樣本數(shù)據(jù)的頻率分布直方圖如下.

1,并根據(jù)圖中的數(shù)據(jù),用分層抽樣的方法抽取個(gè)元件,元件壽命落在之間的應(yīng)抽取幾個(gè)?

21中抽出的壽命落在之間的元件中任取個(gè)元件,求事件恰好有一個(gè)元件壽命落在之間,一個(gè)元件壽命落在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,函數(shù)

(1)求定義域及其零點(diǎn);

(2設(shè),當(dāng)時(shí),若對(duì)任意,存在,使得求實(shí)數(shù)取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】菱形的對(duì)角線互相垂直;正方形的對(duì)角線互相垂直;正方形是菱形。

寫一個(gè)三段論形式的推理,則作為大前提,小前提和結(jié)論的分別為(

A. ②③① B. ①③② C. ①②③ D. ③②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線,過焦點(diǎn)斜率大于零的直線交拋物線于、兩點(diǎn),且與其準(zhǔn)線交于點(diǎn)

若線段的長為,求直線的方程;

上是否存在點(diǎn),使得對(duì)任意直線,直線,的斜率始終成等差數(shù)列,若存在求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案