15.已知A,B,C是球O的球面上三點,且$AB=AC=3,BC=3\sqrt{3},D$為該球面上的動點,球心O到平面ABC的距離為球半徑的一半,則三棱錐D-ABC體積的最大值為$\frac{27}{4}$.

分析 由題意畫出圖形,求出三角形ABC外接圓的半徑,設(shè)出球的半徑,利用直角三角形中的勾股定理求得球的半徑,則三棱錐D-ABC體積的最大值可求.

解答 解:如圖,在△ABC中,∵$AB=AC=3,BC=3\sqrt{3}$,
∴由余弦定理可得cosA=$\frac{{3}^{2}+{3}^{2}-(3\sqrt{3})^{2}}{2×3×3}=-\frac{1}{2}$,則A=120°,
∴sinA=$\frac{\sqrt{3}}{2}$.
設(shè)△ABC外接圓的半徑為r,則$\frac{3\sqrt{3}}{\frac{\sqrt{3}}{2}}=2r$,得r=3.
設(shè)球的半徑為R,則${R}^{2}=(\frac{R}{2})^{2}+{3}^{2}$,解得$R=2\sqrt{3}$.
∵${S}_{△ABC}=\frac{1}{2}×3×3×\frac{\sqrt{3}}{2}=\frac{9\sqrt{3}}{4}$,
∴三棱錐D-ABC體積的最大值為$\frac{1}{3}×\frac{9\sqrt{3}}{4}×3\sqrt{3}=\frac{27}{4}$.
故答案為:$\frac{27}{4}$.

點評 本題主要考查空間幾何體的體積等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x=$\frac{1}{8}$,求值:$\frac{x+1}{{x}^{\frac{2}{3}}+1}$$+\frac{x-1}{{x}^{\frac{2}{3}}+{x}^{\frac{1}{3}}+1}$-$\frac{x-{x}^{\frac{2}{3}}}{{x}^{\frac{1}{3}}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù)z滿足z(1+i)=|$\sqrt{3}$-i|(i是虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題“?x∈Z,x2+x+m<0”的否定是?x∈R,使x2+x+m≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C與雙曲線y2-x2=1有共同焦點,且離心率為$\frac{\sqrt{6}}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(1)設(shè)A為橢圓C的下頂點,M、N為橢圓上異于A的不同兩點,且直線AM與AN的斜率之積為-3
①試問M、N所在直線是否過定點?若是,求出該定點;若不是,請說明理由;
②若P點為橢圓C上異于M,N的一點,且|MP|=|NP|,求△MNP的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:$?x∈({0,\frac{π}{2}}),sinx-x<0$,命題q:$?{x_0}∈({0,+∞}),{2^{x_0}}=\frac{1}{2}$,則下列命題為真命題的是( 。
A.p∧qB.(¬p)∧(-q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖甲,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AD=2,AB=BC=1,E是AD的中點,O是AC與BE的交點,將△ABE沿BE折起到△A1BE的位置,如圖乙
(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE,求點B與平面A1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.F1、F2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點,Q是橢圓上任一點,過一焦點引∠F1QF2的外角平分線的垂線,則垂足M的軌跡為( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線2x+y-2=0與直線4x+my+6=0平行,則它們之間的距離為$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案