12.某老師從星期一到星期五收到信件數(shù)分別是10,6,8,5,6,則該組數(shù)據(jù)的方差s2=(  )
A.$\frac{14}{5}$B.3C.$\frac{16}{5}$D.$\frac{18}{5}$

分析 先求出某老師從星期一到星期五收到信件的平均數(shù),由此能求出該組數(shù)據(jù)的方差.

解答 解:某老師從星期一到星期五收到信件的平均數(shù)為:
$\frac{1}{5}$(10+6+8+5+6)=7,
∴該組數(shù)據(jù)的方差S2=$\frac{1}{5}$[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=$\frac{16}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查一組數(shù)據(jù)的方差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意方差定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}是等差數(shù)列,若a4+2a6+a8=12,則該數(shù)列前11項(xiàng)的和為( 。
A.10B.12C.24D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x+1)=2x2+5x+2,則f(x)的解析式為( 。
A.f(x)=2x2+5x+2B.f(x)=2x2+x-1C.f(x)=2x2+9x+11D.f(x)=2x2+5x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x,y∈R,則“x>y>0”是“x2>y2”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某高校調(diào)查了20名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).
(1)求直方圖中a的值;
(2)從每周自習(xí)時(shí)間在[25,30]的受調(diào)查學(xué)生中,隨機(jī)抽取2人,求恰有1人的每周自習(xí)時(shí)間在[27.5,30)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C的兩個(gè)焦點(diǎn)坐標(biāo)分別是F1(-$\sqrt{3}$,0)、F2($\sqrt{3}$,0),并且經(jīng)過點(diǎn)P($\sqrt{3}$,-$\frac{1}{2}$).
(1)求橢圓C的方程;
(2)若直線l與圓O:x2+y2=1相切,并與橢圓C交于不同的兩點(diǎn)A、B.當(dāng)$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且滿足$\frac{1}{2}$≤λ≤$\frac{2}{3}$時(shí),求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某校有高一學(xué)生650人,高二學(xué)生550人,高三學(xué)生500人,現(xiàn)用分層抽樣抽取樣本為68人的身高來了解該校學(xué)生的身高情況,則高一,高二,高三應(yīng)分別有多少學(xué)生入樣( 。
A.26,21,20B.26,22,20C.30,26,20D.30,22,20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=-x3的圖象關(guān)于( 。
A.y軸對(duì)稱B.直線y=-x對(duì)稱C.坐標(biāo)原點(diǎn)對(duì)稱D.直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)sin2α=sina,α∈(0,$\frac{π}{2}$),則tan2α的值是-$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案