19.在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2sinα}\\{y=2cosα}\end{array}\right.$(a是參數(shù)),現(xiàn)以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cosθ.

分析 消去α得曲線C的直角坐標(biāo)方程是   (x-2)2+y2=4,根據(jù)極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化求出C的極坐標(biāo)方程即可.

解答 解:曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=2+2sinα}\\{y=2cosα}\end{array}\right.$,
即$\left\{\begin{array}{l}{x-2=2sinα①}\\{y=2cosα②}\end{array}\right.$,①2+②2,消去α得
曲線C的直角坐標(biāo)方程是   (x-2)2+y2=4,
因?yàn)閤2+y22,x=ρcosθ,
所以曲線C的極坐標(biāo)方程為:ρ2-4ρcosθ=0,
即ρ=4cosθ,
故答案為:ρ=4cosθ.

點(diǎn)評(píng) 本題考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程間的轉(zhuǎn)化,考查計(jì)算能力,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={1,3,5,7},B={4,8}現(xiàn)從集合A中任取一個(gè)數(shù)為a,從B中任取一個(gè)數(shù)為b,則b>a的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4+5cost\\ y=5+5sint\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=2.
(1)將C測(cè)參數(shù)方程化為普通方程;
(2)直線l與曲線C交于A,B兩點(diǎn),求AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖:在四棱錐E-ABCD中,CB=CD=CE=1,AB=AD=AE=$\sqrt{3}$,EC⊥BD,底面四邊形是個(gè)圓內(nèi)接四邊形,且AC是圓的直徑.
(1)求證:平面BED⊥平面ABCD;
(2)點(diǎn)P是平面ABE內(nèi)一點(diǎn),滿足DP∥平面BEC,求直線DP與平面ABE所成角的正弦值的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+2cosθ\\ y=2sinθ\end{array}\right.$(θ為參數(shù)).
(1)若P是圓C與y軸正半軸的交點(diǎn),以圓心C為極點(diǎn),以x軸的正方向?yàn)闃O軸的方向建立極坐標(biāo)系,求過點(diǎn)P的圓C的切線的極坐標(biāo)方程.
(2)直線l經(jīng)過原點(diǎn)O,傾斜角$α=\frac{π}{6}$,設(shè)l與圓C相交于A,B兩點(diǎn),求點(diǎn)O到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.執(zhí)行如圖所示的程序框圖,若M=1,則輸出的S=2;若輸出的S=14,則整數(shù)M=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)P的直角坐標(biāo)為(1,1),直線l與曲線C的交點(diǎn)為A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示的程序框圖表示求算式“2×3×5×9×17×33”之值,則判斷框內(nèi)不能填入(  )
A.k≤33B.k≤38C.k≤50D.k≤65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.集合A={x|-1<x<1},B={x|x<a}.
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B={x|x<1},求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案