【題目】下列命題中_________為真命題.
①“A∩B=A”成立的必要條件是“AB”; w ②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題; ④“圓內(nèi)接四邊形對角互補(bǔ)”的逆否命題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對數(shù)的底數(shù)).
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0且a≠1,若函數(shù)f(x)=loga[ax2﹣(2﹣a)x+3]在[ ,2]上是增函數(shù),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,短軸長為2,O為原點(diǎn),直線AF與橢圓C的另一個(gè)交點(diǎn)為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點(diǎn),若在橢圓C上存在點(diǎn)R,使OPRQ為平行四邊形,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑分別為 R 、r 的兩個(gè)圓外切于點(diǎn) P , 點(diǎn) P 到這兩圓的一條外公切線的距離等于d .求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 的圖象上關(guān)于y軸對稱的點(diǎn)至少有3對,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為坐標(biāo)原點(diǎn),雙曲線和橢圓均過點(diǎn),且以的兩個(gè)頂點(diǎn)和的兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得與交于兩點(diǎn),與只有一個(gè)公共點(diǎn),且?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com