【題目】下列命題中_________為真命題.

①“A∩B=A”成立的必要條件是“AB”; w ②“x2+y2=0,則x,y全為0”的否命題;

③“全等三角形是相似三角形的逆命題; ④“圓內(nèi)接四邊形對角互補(bǔ)的逆否命題.

【答案】②④

【解析】試題分析:利用常用邏輯用語中命題的知識進(jìn)行判斷命題的真假是解決本題的關(guān)鍵,要熟悉原命題與其逆命題、否命題、逆否命題之間的關(guān)系和充要條件的判斷解:①A∩B=AAB但不能得出AB,∴①不正確;否命題為:x2+y2≠0,則x,y不全為0”,是真命題;逆命題為:若兩個(gè)三角形是相似三角形,則這兩個(gè)三角形全等,是假命題;原命題為真,而逆否命題與原命題是兩個(gè)等價(jià)命題,逆否命題也為真命題.故答案為:②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,直線y= x為曲線y=f(x)的切線(e為自然對數(shù)的底數(shù)).
(1)求實(shí)數(shù)a的值;
(2)用min{m,n}表示m,n中的最小值,設(shè)函數(shù)g(x)=min{f(x),x﹣ }(x>0),若函數(shù)h(x)=g(x)﹣cx2為增函數(shù),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0且a≠1,若函數(shù)f(x)=loga[ax2﹣(2﹣a)x+3]在[ ,2]上是增函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,短軸長為2,O為原點(diǎn),直線AF與橢圓C的另一個(gè)交點(diǎn)為B,且△AOF的面積是△BOF的面積的3倍.

(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點(diǎn),若在橢圓C上存在點(diǎn)R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑分別為 R 、r 的兩個(gè)圓外切于點(diǎn) P , 點(diǎn) P 到這兩圓的一條外公切線的距離等于d .求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 的圖象上關(guān)于y軸對稱的點(diǎn)至少有3對,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為坐標(biāo)原點(diǎn),雙曲線和橢圓均過點(diǎn),且以的兩個(gè)頂點(diǎn)和的兩個(gè)焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.

(1)的方程;

(2)是否存在直線,使得交于兩點(diǎn),與只有一個(gè)公共點(diǎn),且?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè).

①求

②求;

③求;

(2)求除以9的余數(shù).

查看答案和解析>>

同步練習(xí)冊答案