【題目】如圖,在四棱錐中, , , , 的中點.

1)求證: 平面

2)求三棱錐的體積.

【答案】(1)見解析;(2).

【解析】試題分析:1)取PB中點M,連結(jié)AM,MN,推導(dǎo)出四邊形AMND是平行四邊形,從而NDAM,由此能證明ND∥面PAB.
2)N到面ABCD的距離等于P到面ABCD的距離的一半,且PA⊥面ABCD,PA=4,從而三棱錐N-ACD的高是2,由此能求出三棱錐N-ACD的體積.

試題解析:

證明:(Ⅰ)如圖,取PB中點M,連結(jié)AMMN.

MN是△BCP的中位線,∴MNBC,且MN=BC.

依題意得,ADBC,則有ADMN

∴四邊形AMND是平行四邊形,∴NDAM

NDPABAMPAB,

ND∥面PAB

(Ⅱ)∵NPC的中點,

N到面ABCD的距離等于P到面ABCD的距離的一半,且PA⊥面ABCDPA=4,

∴三棱錐NACD的高是2.

在等腰△ABC中,AC=AB=3,BC=4,BC邊上的高為.

BCAD,∴CAD的距離為

SADC=.

∴三棱錐NACD的體積是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)點 (1,0),直線: ,點在直線上移動, 是線段軸的交點, 異于點RQ滿足 .

1求動點的軌跡的方程;

2 的軌跡的方程為過點作兩條互相垂直的曲線

的弦. ,設(shè). 的中點分別為

問直線是否經(jīng)過某個定點?如果是,求出該定點,

如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系中, 為極點,半徑為2的圓的圓心坐標(biāo)為.

1)求圓的極坐標(biāo)方程;

2)設(shè)直角坐標(biāo)系的原點與極點重合, 軸非負(fù)關(guān)軸與極軸重合,直線的參數(shù)方程為為參數(shù)),由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), …….

1)令,若對任意的恒成立,求實數(shù)的值;

2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

1)寫出曲線的參數(shù)方程和直線的普通方程;

2)已知點是曲線上一點,求點到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cosxcos(x﹣ ).
(1)求f( )的值.
(2)求使f(x)< 成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26.{an}的前n項和為Sn
(1)求an及Sn
(2)令bn=﹣ (n∈N*),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個算法的流程圖,則輸出的a值為(
A.511
B.1023
C.2047
D.4095

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,定點為圓上一動點,線段的垂直平分線交線段于點,設(shè)點的軌跡為曲線

(Ⅰ)求曲線的方程;

(Ⅱ)若經(jīng)過的直線交曲線于不同的兩點,(點在點, 之間),且滿足,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案