精英家教網(wǎng)如圖,某小區(qū)準備綠化一塊直徑為AB的半圓形空地,點C在半圓弧上,半圓內△ABC外的地方種草,△ABC的內接正方形PQRS內部為一水池,其余地方種花,若AB=2a,∠CAB=θ,設△ABC的面積為S1,正方形PQRS的邊長為x,面積為S2,將比值
S1
S2
稱為“規(guī)劃合理度”.
(1)求證:x=
2asin2θ
2+sin2θ

(2)當a為定值,θ變化是,求“規(guī)劃合理度”的最小值及此時角θ的大。
分析:(1)在△ABC中,AB=2a,∠CAB=θ所以AC=2acosθ,BC=2asinθ,再用正方形PQRS的邊長為x表示AC=
x
sinθ
+xcosθ
,建立2acosθ=
x
sinθ
+xcosθ
求解.
(2)由(1)x=
2asin2θ
2+sin2θ
可得s2=
4a2(sin2θ)2
(2+sin2θ)2
建議“規(guī)劃合理度”模型
s1
s2
 =
(2+sin2θ)2
2sin2θ
,θ∈(0,
π
2
)
,再用基本不等式求解.
解答:解:(1)在△ABC中,AB=2a,∠CAB=θ
所以AC=2acosθ,BC=2asinθ
因為正方形PQRS的邊長為x
所以AC=
x
sinθ
+xcosθ
,2acosθ=
x
sinθ
+xcosθ
,
∴x=
2asin2θ
2+sin2θ

(2)因為△ABC中,AC=2acosθ,BC=2asinθ
所以s1=4a2sinθcosθ=2a2sin2θ
x=
2asin2θ
2+sin2θ

所以s2=
4a2(sin2θ)2
(2+sin2θ)2

因此“規(guī)劃合理度”
s1
s2
 =
(2+sin2θ)2
2sin2θ
,θ∈(0,
π
2
)

s1
s2
=
(2+sin2θ)2
2sin2θ
=
1
2
(
4
sin2θ
+sin2θ+4)≥
9
2

當且僅當sin2θ=1即θ=
π
4
時取得最小值
9
2
點評:本題主要考查平面圖形中各邊角的量的關系的轉化及建立三角模型用基本不等式法或導數(shù)求其最值的問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內接正方形PQRS為一水池,其余地方種花.若BC=20米,∠ABC=θ,設△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用θ表示S1和S2
(2)當θ變化時,求“規(guī)劃合理度”取得最小值時的角θ的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,某小區(qū)準備綠化一塊直徑為BC的半圓形空地,△ABC的內接正方形PQRS為一水池,△ABC外的地方種草,其余地方種花.若BC=a,∠ABC=θ,設△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2;
(2)若a為定值,當θ為何值時,“規(guī)劃合理度”最?并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,某小區(qū)準備綠化一塊直徑為AB的半圓形空地,O為圓心,C為圓周上一點,CD⊥AB于D,△ACD內為一水池,△ACD外栽種花草,若AB=100米,∠CAB=θ,y=AC+CD.
(1)試用θ表示y;
(2)求y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•楊浦區(qū)二模)如圖,某小區(qū)準備綠化一塊直徑為BC的半圓形空地,△ABC外的地方種草,△ABC的內接正方形PQRS為一水池,其余地方種花.若BC=a,∠ABC=θ,設△ABC的面積為S1,正方形PQRS的面積為S2,將比值
S1S2
稱為“規(guī)劃合理度”.
(1)試用a,θ表示S1和S2
(2)(理)當a為定值,θ變化時,求“規(guī)劃合理度”取得最小值時的角θ的大。
(3)(文)當a為定值,θ=150時,求“規(guī)劃合理度”的值.

查看答案和解析>>

同步練習冊答案