在復(fù)平面內(nèi),復(fù)數(shù)Z=
2
3-i
+i2015對應(yīng)的點(diǎn)位于( 。
A、第四象限B、第三象限
C、第二象限D、第一象限
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的出錯(cuò)運(yùn)算法則,以及復(fù)數(shù)單位的冪運(yùn)算,化簡復(fù)數(shù),推出對應(yīng)點(diǎn)的坐標(biāo)即可.
解答: 解:復(fù)數(shù)Z=
2
3-i
+i2015=
2(3+i)
(3-i)(3+i)
-i=
6+2i
10
-i=
3
5
-
4
5
i

復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo)(
3
5
,-
4
5
),在第四象限.
故選:A.
點(diǎn)評:本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的幾何意義,基本知識(shí)的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足不等式組
x+y-2≥0
x+2y-4≤0
x-y-1≤0
,那么式子z=3x+y的最大值是(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,己知∠BAC=90°,AB=6,若D點(diǎn)在斜邊BC上,CD=2DB,則
AB
AD
的值為( 。
A、48B、24C、12D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,若cosC是方程2x2+x-1=0的一個(gè)根,求:
(Ⅰ)角C的度數(shù);
(Ⅱ)若a=2,b=4,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次不等式ax2+bx+c<0的解集為R的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)f(x)=sin(2x+
π
3
)的導(dǎo)函數(shù)f′(x)的圖象,只需將f(x)的圖象( 。
A、向左平移
π
2
個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)
B、向左平移
π
2
個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來的
1
2
(橫坐標(biāo)不變)
C、向左平移
π
4
個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來的
1
2
(橫坐標(biāo)不變)
D、向左平移
π
4
個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(xω+φ)(A,ω,φ是常數(shù),A>0,ω>0)的最小正周期為π,設(shè)集合M={直線l|l為曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線,x0∈[0,π)].若集合M中有且只有兩條直線互相垂直,則ω=
 
;A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列且a1+a7+a13=4π,則tan(a2+a12)的值為(  )
A、-
3
B、±
3
C、-
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的二次方程ax2+(2a-3)x+a-2=0的兩根為tanα、tanβ.
(1)若a=
5
4
,求tan(α-β)的值;
(2)求tan(α+β)的最小值.

查看答案和解析>>

同步練習(xí)冊答案