設(shè)定義域為R的函數(shù)f(x)=
2x+1
a+4x
為偶函數(shù),其中a為實常數(shù).
(1)求a的值;
(2)求函數(shù)y=f(x)的值域.
考點:函數(shù)奇偶性的判斷,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意可得f(-1)=f(1),解關(guān)于a的方程可得;
(2)由(1)知f(x)=
2
1
2x
+2x
,由基本不等式可得
1
2x
+2x
≥2,由不等式的性質(zhì)可得函數(shù)值域.
解答: 解:(1)∵定義域為R的函數(shù)f(x)=
2x+1
a+4x
為偶函數(shù),
∴f(-1)=f(1),即
2-1+1
a+4-1
=
21+1
a+41
,解得a=1
∴a的值為1;
(2)由(1)知f(x)=
2x+1
1+4x
=
2•2x
1+(2x)2
=
2
1
2x
+2x
,
由基本不等式可得
1
2x
+2x
≥2
1
2x
2x
=2,
當(dāng)且僅當(dāng)
1
2x
=2x
即x=0時取等號,
∴f(x)=
2
1
2x
+2x
∈(0,
1
2
]
∴函數(shù)y=f(x)的值域為:(0,
1
2
]
點評:本題考查函數(shù)的奇偶性,涉及函數(shù)值域和基本不等式,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x-2
的定義域為M,值域為N,則M∩N=(  )
A、M
B、(1,+∞)
C、(-∞,
2
3
D、N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求cos40°+cos60°+2cos140°cos215°-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:向量
OA
=(
3
,0),O為坐標(biāo)原點,動點M滿足:|
OM
+
OA
|+|
OM
-
OA
|=4.
(1)求動點M的軌跡C的方程;
(2)已知直線l1,l2都過點B(0,1),且l1⊥l2,l1,l2與軌跡C分別交于點D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=-1,an+1=2an+4•3n-1,求通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,直線AA1與底面ABC所成的角是直角,直線AB與B1C1所成的角為45°,∠BAC=90°,且AB=AA1,D、E、F分別為B1A、A1C、BC的中點.
(1)求證:DE∥平面ABC;
(2)求證:平面AB1F⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率為1的直線與兩直線2x+y-1=0,x+2y-2=0分別交于A、B兩點,求線段AB中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
x2+2x
x+
1
2
(x≥0)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說的兩點間的距離往往不是指兩點間的直線距離(位移),而是實際路程(如圖1).在直角坐標(biāo)平面內(nèi),我們定義A(x1,y1),B(x2,y2)兩點間的“直角距離”為:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐標(biāo)系中如圖2,寫出所有滿足到原點的“直角距離”為2的“格點”的坐標(biāo).(格點指橫、縱坐標(biāo)均為整數(shù)的點)
(2)求到兩定點F1、F2的“直角距離”和為定值2a(a>0)的動點軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動點的軌跡
①F1(-1,0),F(xiàn)2(1,0),a=2
②F1(-1,-1),F(xiàn)2(1,1),a=2;
③F1(-1,-1),F(xiàn)2(1,1),a=4.
(3)寫出同時滿足以下兩個條件的“格點”的坐標(biāo),并說明理由(格點指橫、縱坐標(biāo)均為整數(shù)的點).
①到A(-1,-1),B(1,1)兩點“直角距離”相等;
②到C(-2,-2),D(2,2)兩點“直角距離”和最小.

查看答案和解析>>

同步練習(xí)冊答案