【題目】,,表示空間中三條不同的直線,表示平面, 給出下列命題:

,, ; ② ,, ;

,, ; ④ , , .

其中真命題的序號(hào)是( )

A. ①② B. ②③ C. ①④ D. ②④

【答案】D

【解析】

與立體幾何有關(guān)的命題真假判斷,要多結(jié)合空間圖形,充分利用相關(guān)的公理、定理解答判斷線與線、線與面、面與面之間的關(guān)系,可將線線、線面、面面平行垂直的性質(zhì)互相轉(zhuǎn)換,進(jìn)行證明,也可將題目的中直線放在空間正方體內(nèi)進(jìn)行分析.

因?yàn)榭臻g中,用ab,c表示三條不同的直線,

中正方體從同一點(diǎn)出發(fā)的三條線,滿足已知但是,所以錯(cuò)誤;

,,則,滿足平行線公理,所以正確;

平行于同一平面的兩直線的位置關(guān)系可能是平行、相交或者異面,所以錯(cuò)誤;

垂直于同一平面的兩直線平行,由線面垂直的性質(zhì)定理判斷正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足,且是等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)鄭州空氣污染較為嚴(yán)重,現(xiàn)隨機(jī)抽取一年(365天)內(nèi)100天的空氣中指數(shù)的監(jiān)測(cè)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下:

空氣質(zhì)量

優(yōu)

輕微污染

輕度污染

中度污染

中度重污染

重度污染

天數(shù)

4

13

18

30

9

11

15

記某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失為(單位:元),指數(shù)為.當(dāng)在區(qū)間內(nèi)時(shí)對(duì)企業(yè)沒有造成經(jīng)濟(jì)損失;當(dāng)在區(qū)間內(nèi)時(shí)對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)指數(shù)為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)指數(shù)為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)指數(shù)大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.

(1)試寫出的表達(dá)式;

(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失大于500元且不超過900元的概率;

(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為鄭州市本年度空氣重度污染與供暖有關(guān)?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合計(jì)

供暖季

非供暖季

合計(jì)

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】7位歌手(17號(hào))參加一場(chǎng)歌唱比賽,由500名大眾評(píng)委現(xiàn)場(chǎng)投票決定歌手名次.根據(jù)年齡將大眾評(píng)委分為五組,各組的人數(shù)如下:

組別

A

B

C

D

E

人數(shù)

50

100

150

150

50

1)為了調(diào)查評(píng)委對(duì)7位歌手的支持情況,現(xiàn)用分層抽樣方法從各組中抽取若干評(píng)委,其中從B組抽取了6人,請(qǐng)將其余各組抽取的人數(shù)填入下表.

組別

A

B

C

D

E

人數(shù)

50

100

150

150

50

抽取人數(shù)


6




2)在(1)中,若A,B兩組被抽到的評(píng)委中各有2人支持1號(hào)歌手,現(xiàn)從這兩組被抽到的評(píng)委中分別任選1人,求這2人都支持1號(hào)歌手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為半圓的直徑,點(diǎn)是半圓弧上的兩點(diǎn), .曲線經(jīng)過點(diǎn),且曲線上任意點(diǎn)滿足為定值.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)過點(diǎn)的直線與曲線交于不同的兩點(diǎn),求面積最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體中,,,點(diǎn)E是線段AB中點(diǎn).

證明:;

求二面角的大小的余弦值;

A點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知p:方程有兩個(gè)不等的負(fù)實(shí)根,q:方程

無(wú)實(shí)根,若為真,為假,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)若有兩個(gè)零點(diǎn),求的范圍;

2)若有兩個(gè)極值點(diǎn),求的范圍;

3)在(2)的條件下,若的兩個(gè)極值點(diǎn)為 ,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案