函數(shù)f(x)=(x-1)0+
1
x+3
的定義域為( 。
A、(-3,1)
B、(-3,+∞)
C、(-3,1)∪(1,+∞)
D、(1,+∞)
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)使函數(shù)的解析式有意義的原則,結(jié)合分母不等于0,偶次被開方數(shù)不小于0,零的零次冪沒有意義,可以構(gòu)造關(guān)于x的不等式組,進(jìn)而求解.
解答: 解:要使函數(shù)的解析式有意義,
x須滿足:
x-1≠0
x+3>0

解得x>-3,且x≠1
故函數(shù)的定義域為:(-3,1)∪(1,+∞),
故選:C.
點評:本題考查的知識點是函數(shù)的定義域及其求法,熟練掌握函數(shù)定義域的求解原則是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC中,∠C=90°.
(Ⅰ)在線段BC上任取一點M,求使∠CAM<30°的概率;
(Ⅱ)在∠CAB內(nèi)任作射線AM,求使∠CAM<30°的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項的和為Sn,a1=-
1
2
,an+1=
2an+1,an≤0
an-
3
4
,an>0
,則S2015=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
+3,數(shù)列{an}的各項均為正數(shù),a1=1,且a
 
2
n+1
=
1
f(
a
2
n
)
(n∈N*).
(Ⅰ)證明:數(shù)列(
1
a
2
n
)為等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)數(shù)列{bn}滿足bn
(1-n)
a
2
n
+n
a
2
n
=2n,若bn≥m對任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:等差數(shù)列{an}中,a1=1,S3=9,其前n項和為Sn
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
2n
(n+1)Sn
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運(yùn)動時,下列四個結(jié)論:①EP⊥AC1;②EP∥BD;③EP∥面SBD;④EP⊥面SAC.中恒成立的為( 。
A、①③B、③④C、①②D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(-2x+
π
3
)+1,若x∈(-
π
6
,
π
2
),則函數(shù)f(x)的值域為( 。
A、(1-
3
,1+
3
B、(1-
3
,3]
C、[-1,1+
3
D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x-
π
6
),則如下結(jié)論:
①函數(shù)f(x)的最小正周期為π;
②函數(shù)f(x)在[
π
6
12
]上的值域為[1,
3
];
③函數(shù)f(x)在(
π
3
,
12
)上是減函數(shù);
④函數(shù)y=f(x)的圖象向左平移
π
6
個單位得到函數(shù)y=2sin2x的圖象,
其中正確的是
 
(寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過圓(x+3)2+(y-2)2=2的圓心C,且與直線x-y=0垂直的直線方程是( 。
A、x+y+1=0
B、x+y-5=0
C、x-y+1=0
D、x-y+5=0

查看答案和解析>>

同步練習(xí)冊答案