【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),.
(1)當時,求的極值;
(2)若存在實數(shù),使得,且,求證:
【答案】(1)見解析;(2)見證明
【解析】
(1)求導,討論其單調(diào)性,求其極值即可;
(2)求導,對a進行討論,求其單調(diào)性,得到的范圍,再利用函數(shù)的單調(diào)性和最值可證得所求的范圍即可.
解:(1)
當時, 得.
當時, 當時,
所以當時,單調(diào)遞減, 當時,單調(diào)遞增,
可得當時, 有極小值
(2)由(1)
當時, 此時單調(diào)遞增,
若,可得,與矛盾;
當時, 由(1) 知當時,單調(diào)遞減, 當時,單調(diào)遞增,
同理不存在或,使得;
不妨設,則有
因為時,單調(diào)遞減, 當時,單調(diào)遞增,且,
所以當時,
由且,可得,故,
又在單調(diào)遞減,且
所以,所以.同理
即
解得
綜上所述,命題得證.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形, ,M是線段DE上的點,滿足DM=2ME.
(1)證明:BE//平面MAC;
(2)求直線BF與平面MAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),圓的方程為.以原點為極點,軸正半軸為極軸建立極坐標系.
(Ⅰ)求直線及圓的極坐標方程;
(Ⅱ)若直線與圓交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的興起,越來越多的人選擇網(wǎng)上購物.某購物平臺為了吸引顧客,提升銷售額,每年雙十一都會進行某種商品的促銷活動.該商品促銷活動規(guī)則如下:①“價由客定”,即所有參與該商品促銷活動的人進行網(wǎng)絡報價,每個人并不知曉其他人的報價,也不知道參與該商品促銷活動的總人數(shù);②報價時間截止后,系統(tǒng)根據(jù)當年雙十一該商品數(shù)量配額,按照參與該商品促銷活動人員的報價從高到低分配名額;③每人限購一件,且參與人員分配到名額時必須購買.某位顧客擬參加2019雙十一該商品促銷活動,他為了預測該商品最低成交價,根據(jù)該購物平臺的公告,統(tǒng)計了最近5年雙十一參與該商品促銷活動的人數(shù)(見下表)
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份編號t | 1 | 2 | 3 | 4 | 5 |
參與人數(shù)(百萬人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可用線性回歸模型模擬擬合參與人數(shù)(百萬人)與年份編號之間的相關關系.請用最小二乘法求關于的線性回歸方程:,并預測2019年雙十一參與該商品促銷活動的人數(shù);
(2)該購物平臺調(diào)研部門對2000位擬參與2019年雙十一該商品促銷活動人員的報價價格進行了一個抽樣調(diào)查,得到如下的一份頻數(shù)表:
報價區(qū)間(千元) |
| |||||
頻數(shù) | 200 | 600 | 600 | 300 | 200 | 100 |
①求這2000為參與人員報價的平均值和樣本方差(同一區(qū)間的報價可用該價格區(qū)間的中點值代替);
②假設所有參與該商品促銷活動人員的報價可視為服從正態(tài)分布,且與可分別由①中所求的樣本平均值和樣本方差估值.若預計2019年雙十一該商品最終銷售量為317400,請你合理預測(需說明理由)該商品的最低成交價.
參考公式即數(shù)據(jù)(i)回歸方程:,其中,
(ii)
(iii)若隨機變量服從正態(tài)分布,則,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從1到9的九個數(shù)字中取三個偶數(shù)四個奇數(shù),試問:
(1)能組成多少個沒有重復數(shù)字的七位數(shù)?
(2)在(1)中的七位數(shù)中三個偶數(shù)排在一起的有幾個?
(3)在(1)中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個?
(4)在(1)中任意兩偶然都不相鄰的七位數(shù)有幾個?
(答題要求:先列式,后計算 , 結果用具體數(shù)字表示.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中 R.
(1)如果曲線在x=1處的切線斜率為1,求實數(shù)的值;
(2)若函數(shù)的極小值不超過,求實數(shù)的最小值;
(3)對任意[1,2],總存在[4,8],使得=成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,質(zhì)量指標值越大表明質(zhì)量越好,現(xiàn)用一種新配方做試驗,生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標值,得到下面試驗結果:
質(zhì)量指標值 | |||||
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)將答題卡上列出的這些數(shù)據(jù)的頻率分布表填寫完整,并補齊頻率分布直方圖;
(2)估計這種產(chǎn)品質(zhì)量指標值的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)與中位數(shù)(結果精確到0.1).
質(zhì)量指標值分組 | 頻數(shù) | 頻率 |
6 | 0.06 | |
合計 | 100 | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com