【題目】已知函數f(x)=x2﹣6x+8,x∈[1,a],并且函數f(x)的最小值為f(a),則實數a的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】如圖所示,ABCD﹣A1B1C1D1是棱長為a的正方體,M、N分別是下底面的棱A1B1 , B1C1的中點,P是上底面的棱AD上的一點,AP= ,過P、M、N的平面交上底面于PQ,Q在CD上,則PQ= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點A是以線段BC為直徑的圓O上一點,AD⊥BC于點D,過點B作圓O的切線,與CA的延長線相交于點E,點G是AD的中點,連接CG并延長與BE相交于點F,延長AF與CB的延長線相交于點P.
(1)求證:BF=EF;
(2)求證:PA是圓O的切線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知公差不為0的等差數列{an}的前n項和為Sn, S3=a4+6,且a1, a4, a13成等比數列.
(1)求數列{an}的通項公式;
(2)設,求數列{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】首屆世界低碳經濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進行技術攻關,采用了新式藝,把二氧化碳轉化為一種可利用的化工產品,已知該單位每月的處理量最少為300噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產品價值為200元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合.如果對于的每一個含有個元素的子集, 中必有4個元素的和等于,稱正整數為集合的一個“相關數”.
(Ⅰ)當時,判斷5和6是否為集合的“相關數”,說明理由;
(Ⅱ)若為集合的“相關數”,證明: ;
(Ⅲ)給定正整數.求集合的“相關數” 的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(文科選做)如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E、F分別是棱BC,CC1的中點,P是側面BCC1B1內一點,若A1P∥平面AEF,則線段A1P長度的取值范圍是_____。
(理科選做)在正方體ABCD-A1B1C1D1中,點E為BB1的中點,則平面A1ED與平面ABCD所成的銳二面角的余弦值為________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com