精英家教網 > 高中數學 > 題目詳情

【題目】已知的角所對的邊份別為,且

1求角的大。

2,求的周長的取值范圍

【答案】12

【解析】

試題分析:1利用正弦定理、三角形內角和定理及同角三角函數關系,將條件化為

sinB=sinA+C=sinAcosC+cosAsinC,再利用兩角和與差的三角函數公式化簡,求得cosA=,從而確定的大。

2由題設利用正弦定理將的周長表示民關于角B的三角函數,然后利用三角函數的性質求周長的取值范圍

試題解析:解:1由acosC+c=b和正弦定理得,

sinAcosC+sinC=sinB,

又sinB=sinA+C=sinAcosC+cosAsinC,

sinC=cosAsinC,

sinC≠0,cosA=

0<A<π,A=

2由正弦定理得,b=sinB,c=sinC,

則l=a+b+c=1+sinB+sinC

=1+ [sinB+sinA+B]

=1+2sinB+cosB=1+2sinB+).

A=B0,B+,,

sinB+,1],

∴△ABC的周長l的取值范圍為2,3]

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68

(1)求回歸直線方程,其中, ;

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 底面為菱形,平面,點在棱上.

(Ⅰ)求證:直線平面

(Ⅱ)若平面,求證:;

(Ⅲ)是否存在點,使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行當甲船位于A1處時,乙船位于甲船的南偏西75°方向的B1此時兩船相距20海里當甲船航行20分鐘到達A2處時,乙船航行到甲船的南偏西60°方向的B2,此時兩船相距10海里問:乙船每小時航行多少海里?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列命題的真假,并說明理由.

(1)x∈R,都有x2x+1>;

(2)α,β,使cos(αβ)=cos α-cos β;

(3)x,y∈N,都有(xy)∈N;

(4)xy∈Z,使xy=3.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園,公園由長方形的休閑區(qū)(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)的面積為4000平方米,人行道的寬分別為4米和10米.

(1)若設休閑區(qū)的長米,求公園所占面積關于的函數的解析式;

(2)要使公園所占面積最小,休閑區(qū)的長和寬該如何設計?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,曲線在點處的切線方程為.

(1)求的解析式;

(2)設,證明:函數圖象上任一點處的切線與兩坐標軸所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣6x+8,x∈[1,a],并且函數f(x)的最小值為f(a),則實數a的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有三支股票, , ,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人數是持有股票的人數的2倍.在持有股票的人中,只持有股票的人數比除了持有股票外,同時還持有其它股票的人數多1.在只持有一支股票的人中,有一半持有股票.則只持有股票的股民人數是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案