【題目】已知的角所對的邊份別為,且
(1)求角的大。
(2)若,求的周長的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)利用正弦定理、三角形內角和定理及同角三角函數關系,將條件化為
sinB=sin(A+C)=sinAcosC+cosAsinC,再利用兩角和與差的三角函數公式化簡,求得cosA=,從而確定角的大。
(2)由題設利用正弦定理將的周長表示民關于角B的三角函數,然后利用三角函數的性質求周長的取值范圍.
試題解析:解:(1)由acosC+c=b和正弦定理得,
sinAcosC+sinC=sinB,
又sinB=sin(A+C)=sinAcosC+cosAsinC,
∴sinC=cosAsinC,
∵sinC≠0,∴cosA=,
∵0<A<π,∴A=.
(2)由正弦定理得,b==sinB,c==sinC,
則l=a+b+c=1+ (sinB+sinC)
=1+ [sinB+sin(A+B)]
=1+2(sinB+cosB)=1+2sin(B+).
∵A=,∴B∈(0,),∴B+∈(,),
∴sin(B+)∈(,1],
∴△ABC的周長l的取值范圍為(2,3].
科目:高中數學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程,其中, ;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 底面為菱形,平面,點在棱上.
(Ⅰ)求證:直線平面;
(Ⅱ)若平面,求證:;
(Ⅲ)是否存在點,使得四面體的體積等于四面體的體積的?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,甲船以每小時30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當甲船位于A1處時,乙船位于甲船的南偏西75°方向的B1處,此時兩船相距20海里.當甲船航行20分鐘到達A2處時,乙船航行到甲船的南偏西60°方向的B2處,此時兩船相距10海里.問:乙船每小時航行多少海里?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】判斷下列命題的真假,并說明理由.
(1)x∈R,都有x2-x+1>;
(2)α,β,使cos(α-β)=cos α-cos β;
(3)x,y∈N,都有(x-y)∈N;
(4)x,y∈Z,使x+y=3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園,公園由長方形的休閑區(qū)(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設休閑區(qū)的長米,求公園所占面積關于的函數的解析式;
(2)要使公園所占面積最小,休閑區(qū)的長和寬該如何設計?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有三支股票, , ,28位股民的持有情況如下:每位股民至少持有其中一支股票,在不持有股票的人中,持有股票的人數是持有股票的人數的2倍.在持有股票的人中,只持有股票的人數比除了持有股票外,同時還持有其它股票的人數多1.在只持有一支股票的人中,有一半持有股票.則只持有股票的股民人數是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com