7.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的離心率為$\sqrt{17}$,則圓(x-6)2+y2=1上的動(dòng)點(diǎn)M到雙曲線C的漸近線的最短距離為( 。
A.23B.24C.$\frac{{24\sqrt{17}}}{17}-1$D.$\frac{{24\sqrt{17}}}{17}$

分析 由雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的離心率為$\sqrt{17}$,轉(zhuǎn)化求解雙曲線的一條漸近線到圓(x-6)2+y2=1上的點(diǎn)的最短距離.

解答 解:雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的離心率為$\sqrt{17}$,
可得$\frac{c}{a}$=$\sqrt{17}$,可得$\frac{{a}^{2}+^{2}}{{a}^{2}}=17$,$\frac{^{2}}{{a}^{2}}=16$,b=4a,則b2=16(c2-b2),解得$\frac{c}=\frac{4}{\sqrt{17}}$
雙曲線的一條漸近線方程為bx+ay=0,
∵雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線到圓(x-6)2+y2=1上的點(diǎn)的最短距離為:
$\frac{|6b|}{\sqrt{{a}^{2}+^{2}}}-1$=$\frac{6b}{c}$-1=$\frac{{24\sqrt{17}}}{17}-1$.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的各項(xiàng)均為不等的正整數(shù),其前n項(xiàng)和為Sn,我們成滿足條件“對(duì)任意的m,n∈N*,均有(n-m)Sm+n=(m+n)(Sn-Sm)”的數(shù)列{an}為“好”數(shù)列.
(1)試判斷數(shù)列{an},{bn}是否為“好”數(shù)列,其中${a_n}=2n-1,{b_n}={2^{n-1}},n∈{N^*}$,并給出證明.
(2)已知數(shù)列{cn}為“好”數(shù)列.
①c2016=2017,求數(shù)列的通項(xiàng)公式;
②若c1=p,且對(duì)任意的給定正整數(shù)p,s(s>1),有c1,cs,ct成等比數(shù)列,求證:t≥s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在三角形ABC中,點(diǎn)E,F(xiàn)滿足$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{AB}$,$\overrightarrow{CF}=2\overrightarrow{FA}$,若$\overrightarrow{EF}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=$-\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知實(shí)數(shù)c>0,設(shè)命題p:函數(shù)y=(2c-1)x在R上單調(diào)遞減;命題q:不等式x+|x-2c|>1的解集為R,如果p∨q為真,p∧q為假,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.把邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折起,使得平面ABD⊥平面CBD,則異面直線AD,BC所成的角為( 。
A.120°B.30°C.90°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線l:$\sqrt{3}x-y+4=0$與圓x2+y2=16交于A,B兩點(diǎn),則$\overrightarrow{AB}$在x軸正方向上投影的絕對(duì)值為(  )
A.$4\sqrt{3}$B.4C.$2\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-mx(m為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)$m≥\frac{{3\sqrt{2}}}{2}$時(shí),設(shè)g(x)=2f(x)+x2的兩個(gè)極值點(diǎn)x1,x2,(x1<x2)恰為h(x)=lnx-cx2-bx的零點(diǎn),求$y=({x_1}-{x_2}){h^'}(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知實(shí)數(shù)a為常數(shù),U=R,設(shè)集合A={x|$\frac{x-3}{x+1}$>0},B={x|y=$\sqrt{lo{g}_{2}x-1}$},C={x|x2-(4+a)x+4a≤0}.
(1)求A∩B;
(2)若∁UA⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{a}$+$\overrightarrow$=( 。
A.$\overrightarrow{AC}$B.$\overrightarrow{CA}$C.$\overrightarrow{BD}$D.$\overrightarrow{DB}$

查看答案和解析>>

同步練習(xí)冊(cè)答案