16.如圖所示是求等比數(shù)列前n項(xiàng)和的流程圖,則空白處應(yīng)填(  )
A.q=1B.q≠1C.q>1D.q<1

分析 求等比數(shù)列前n項(xiàng)和時(shí),先判斷是否q=1,再利用公式結(jié)束Sn

解答 解:根據(jù)題意,求等比數(shù)列前n項(xiàng)和時(shí),
當(dāng)q=1時(shí),Sn=na1,
當(dāng)q≠1時(shí),Sn=$\frac{{a}_{1}(1{-q}^{n})}{1-q}$;
所以在流程圖中,空白處應(yīng)填q=1.
故選:A.

點(diǎn)評(píng) 本題考查了利用程序框圖求等比數(shù)列前n項(xiàng)和的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)P是直線x+y-2=0上的動(dòng)點(diǎn),點(diǎn)Q是圓x2+y2=1上的動(dòng)點(diǎn),則線段PQ長的最小值為$\sqrt{2}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=(2x+1)ex(e是自然對(duì)數(shù)的底),則函數(shù)f(x)在點(diǎn)(0,1)處的切線方程為y=3x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.6名大學(xué)畢業(yè)生先分成兩組,其中一組2人,一組4人,再分配到2個(gè)不同的工作崗位實(shí)習(xí),則符合條件的不同分法數(shù)為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓C:(x-1)2+y2=9,點(diǎn)B(-4,0),若存在不同于點(diǎn)B的定點(diǎn)A,對(duì)于圓C任意一點(diǎn)P到定點(diǎn)A和點(diǎn)B的距離比為一個(gè)常數(shù),則此常數(shù)值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-x,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[-2,2)B.[-1,2)C.(-2,-1]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}前n項(xiàng)和為Sn,且滿足a1=1,2Sn=anan+1
(1)計(jì)算a2、a3、a4的值,并猜想{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{{a}_{n}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在等差數(shù)列{an}中,已知a2與a4是方程x2-6x+8=0的兩個(gè)根,若a4>a2,則a2017+a1=( 。
A.2018B.2017C.2016D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.打鼾不僅影響別人休息,而且可能與患某種疾病有關(guān).下表是一次調(diào)查所得的數(shù)據(jù),
患心臟病未患心臟病合計(jì)
每一晚都打鼾30224254
不打鼾2413551379
合計(jì)5415791633
根據(jù)獨(dú)立性檢驗(yàn)原理,能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為每一晚都打鼾與患心臟病有關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案