(本小題滿分13分)
在平面直角坐標系中,已知點
,點
在直線
上運動,過點
與
垂直的直線和
的中垂線相交于點
.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設點
是軌跡
上的動點,點
,
在
軸上,圓
(
為參數(shù))內(nèi)切于
,求
的面積的最小值.
(Ⅰ)設點
的坐標為
,由題設知,
.
所以動點
的軌跡
是以
為焦點,
為準線的拋物線,其方程為
. ……
分
(Ⅱ)設
,
,
,且
,
故直線
的方程為
.
由
消去參數(shù)
,得
. ……
分
由題設知,圓心
到直線
的距離為
,即
.
注意到
,化簡上式,得
,同理可得
.
由上可知,
,
為方程
的兩根,根據(jù)求根公式,可得
. ……
分
故
的面積為
,等號當且僅當
時成立.此時點
的坐標為
或
.
綜上所述,當點
的坐標為
或
時,
的面積取最小值
.
……
分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共14分)
已知
,動點
到定點
的距離比
到定直線
的距離小
.
(I)求動點
的軌跡
的方程;
(Ⅱ)設
是軌跡
上異于原點
的兩個不同點,
,求
面積的最小值;
(Ⅲ)在軌跡
上是否存在兩點
關于直線
對稱?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的左焦點F的直線
交橢圓于點A、B,交其左準線于點C,
若
,則此直線的斜率為
A、
B、
C、
D、
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本大題滿分14分)如圖,F(xiàn)為雙曲線C:
的右焦點。P為雙曲線C右支上一點,且位于
軸上方,M為左準線上一點,
為坐標原點。已知四邊形
為平行四邊形,
。
(Ⅰ)寫出雙曲線C的離心率
與
的關系式;
(Ⅱ)當
時,經(jīng)過焦點F且品行于OP的直線交雙曲線于A、B點,若
,求此時的雙曲線方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式
:
可把平面直角坐標系上的一點
變換到這一平面上的一點
.
(1)若橢圓
的中心為坐標原點,焦點在
軸上,且焦距為
,長軸頂點和短軸頂點間的距離為2. 求該橢圓
的標準方程,并求出其兩個焦點
、
經(jīng)變換公式
變換后得到的點
和
的坐標;
(2) 若曲線
上一點
經(jīng)變換公式
變換后得到的點
與點
重合,則稱點
是曲線
在變換
下的不動點. 求(1)中的橢圓
在變換
下的所有不動點的坐標;
(3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換
下的不動點的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,是否存在斜率為k(k≠0)的直線
,使
與橢圓交于不同的兩點A、B,且線段
的垂直平分線經(jīng)過點M(0,-1),求斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過原點的直線與橢圓
交于A、B兩點,
,
為橢圓的焦點,則四邊形AF
1BF
2面積的最大值是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
曲線
在
處的切線的斜率是( )
查看答案和解析>>