【題目】若是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)

若直線,則在平面內(nèi),一定不存在與直線平行的直線.

若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi),不一定存在與直線垂直的直線.

若直線,則在平面內(nèi),一定存在與直線垂直的直線.

【答案】②④

【解析】試題分析:時,在平面內(nèi)存在與直線平行的直線.若直線,則平面的交線必與直線垂直,而在平面內(nèi)與平面的交線平行的直線有無數(shù)條,因此在平面內(nèi),一定存在無數(shù)條直線與直線垂直.當直線為平面的交線時,在平面內(nèi)一定存在與直線垂直的直線.當直線為平面的交線,或與交線平行,或垂直于平面時,顯然在平面內(nèi)一定存在與直線垂直的直線.當直線為平面斜線時,過直線上一點作直線垂直平面,設(shè)直線在平面上射影為,則平面內(nèi)作直線垂直于,則必有直線垂直于直線,因此在平面內(nèi),一定存在與直線垂直的直線.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是正方形的四棱錐P﹣ABCD中,PA⊥面ABCD,BD交AC于點E,F(xiàn)是PC中點,G為AC上一點.

(1)求證:BD⊥FG;
(2)確定點G在線段AC上的位置,使FG∥平面PBD,并說明理由;
(3)當二面角B﹣PC﹣D的大小為 時,求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分16分)數(shù)列, 滿足: ,

1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列;

2)若數(shù)列都是等差數(shù)列,求證:數(shù)列從第二項起為等差數(shù)列;

3)若數(shù)列是等差數(shù)列,試判斷當時,數(shù)列是否成等差數(shù)列?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在[a,b]上的函數(shù)f(x)=x3﹣3x2+1的值域為[﹣3,1],則b﹣a的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+ ﹣2)(a>0) (Ⅰ)當1<a<4時,函數(shù)f(x)在[2,4]上的最小值為ln ,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國南宋時期的數(shù)學(xué)家秦九韶提出的一種多項式f(x)=anxn+an1xn1+…+a1x+a0的求值問題的算法.現(xiàn)按照這個程序執(zhí)行函數(shù)f (x)=3x4﹣2x3﹣6x﹣17的計算,若輸入的值x0=2,則輸出的v的值是(

A.0
B.2
C.3
D.﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為 ,圓心角為60°的扇形的弧上任取一點P,作扇形的內(nèi)接矩形PNMQ,使點Q在OA上,點N,M在OB上,設(shè)矩形PNMQ的面積為y,∠POB=θ.

(1)將y表示成θ的函數(shù)關(guān)系式,并寫出定義域;
(2)求矩形PNMQ的面積取得最大值時 的值;
(3)求矩形PNMQ的面積y≥ 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mex﹣x﹣1(其中e為自然對數(shù)的底數(shù),),若f(x)=0有兩根x1 , x2且x1<x2 , 則函數(shù)y=(e ﹣e )( ﹣m)的值域為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從1開始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個三角形框架在圖中上下或左右移動,使每次恰有九個數(shù)在此三角形內(nèi),則這九個數(shù)的和可以為( )

A.2097 B.2112 C.2012 D.2090

查看答案和解析>>

同步練習冊答案