【題目】從1開始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個(gè)三角形框架在圖中上下或左右移動(dòng),使每次恰有九個(gè)數(shù)在此三角形內(nèi),則這九個(gè)數(shù)的和可以為( )

A.2097 B.2112 C.2012 D.2090

【答案】C

【解析】

試題分析:設(shè)最上層的一個(gè)數(shù)為a,則第二層的三個(gè)數(shù)為a+7,a+8,a+9,第三層的五個(gè)數(shù)為a+14,a+15,a+16,a+17,a+18,根據(jù)題意求和驗(yàn)證.

解:根據(jù)如圖所示的規(guī)則排列,設(shè)最上層的一個(gè)數(shù)為a,則第二層的三個(gè)數(shù)為a+7,a+8,a+9,第三層的五個(gè)數(shù)為a+14,a+15,a+16,a+17,a+18,

這9個(gè)數(shù)之和為a+3a+24+5a+80=9a+104.

由9a+104=2012,得a=212,是自然數(shù).

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若是兩個(gè)相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)

若直線,則在平面內(nèi),一定不存在與直線平行的直線.

若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi),不一定存在與直線垂直的直線.

若直線,則在平面內(nèi),一定存在與直線垂直的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 ,且|kb|=| kb|(k>0).

(Ⅰ)用k表示數(shù)量積

(Ⅱ)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求的值;

(Ⅱ)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次耐力和體能測試之后,某校對其甲、乙、丙、丁四位學(xué)生的耐力成績()和體能成績()進(jìn)行回歸分析,求得回歸直線方程為.由于某種原因,成績表(如下表所示)中缺失了乙的耐力和體能成績.

耐力成績(X)

7.5

m

8

8.5

體能成績(Y)

8

n

8.5

9.5

綜合素質(zhì)

15.5

16

16.5

18

(Ⅰ)請?jiān)O(shè)法還原乙的耐力成績和體能成績;

(Ⅱ)在區(qū)域性校際學(xué)生身體綜合素質(zhì)比賽中,由甲、乙、丙、丁四位學(xué)生組成學(xué)校代表隊(duì)參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學(xué)校代表中隨機(jī)抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質(zhì)分高于16分,就能為所在學(xué)校贏得一枚榮譽(yù)獎(jiǎng)?wù)拢粲洷荣愔汹A得榮譽(yù)獎(jiǎng)?wù)碌拿稊?shù)為,試根據(jù)上表所提供數(shù)據(jù),預(yù)測該校所獲獎(jiǎng)?wù)聰?shù)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14分

在數(shù)列中,,且.

() 求,猜想的表達(dá)式,并加以證明;

() 設(shè),求證:對任意的自然數(shù),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= x2+ax﹣lnx(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a>1時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)若對任意a∈(3,4)及任意x1 , x2∈[1,2],恒有 m+ln2>|f(x1)﹣f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)內(nèi)取到一個(gè)最大值和一個(gè)最小值,且當(dāng)x=π時(shí),y有最大值3,當(dāng)x=6π時(shí),y有最小值﹣3.
(1)求此函數(shù)解析式;
(2)寫出該函數(shù)的單調(diào)遞增區(qū)間;
(3)是否存在實(shí)數(shù)m,滿足不等式Asin( )>Asin( )?若存在,求出m值(或范圍),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在[1,e]上的最小值為1,求實(shí)數(shù)a的取值范圍;(其中e為自然對數(shù)的底數(shù));
(3)若 上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案