2.設(shè)A,B是兩個(gè)非空集合,定義集合A-B={x|x∈A且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},則A-B=( 。
A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,5}

分析 化簡(jiǎn)集合A,B,利用A-B是集合A中的元素且不是B中的元素,求出A-B.

解答 解:∵A={x∈N|0≤x≤5}={0,1,2,3,4,5},B={x|x2-7x+10<0}=(2,5),
A-B={x|x∈A且x∉B},
∴A-B={0,1,2,5},
故選D.

點(diǎn)評(píng) 本題考查利用題中的定義求集合、考查二次不等式,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lg(x+$\frac{a}{x}$-2),其中a是大于0的常數(shù).
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的定義域;
(2)若對(duì)任意x∈[2,+∞)恒有f(x)>0,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某四棱錐的三視圖如圖所示,正視圖、側(cè)視圖都是邊長(zhǎng)為$2\sqrt{3}$的等邊三角形,俯視圖是一個(gè)正方形,則此四棱錐的體積是( 。
A.$8\sqrt{3}$B.12C.24D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)公比為q(q>0)的等比數(shù)列{an}的前項(xiàng)和為Sn,若S2=3a2+2,S4=3a4+2,則a1=(  )
A.-2B.-1C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在矩形ABCD中,AB<BC,現(xiàn)將△ABD沿矩形的對(duì)角線BD所在的直線進(jìn)行翻折,在翻折的過(guò)程中,給出下列結(jié)論:
①存在某個(gè)位置,使得直線AC與直線BD垂直;
②存在某個(gè)位置,使得直線AB與直線CD垂直;
③存在某個(gè)位置,使得直線AD與直線BC垂直.
其中正確結(jié)論的序號(hào)是②.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若${({\frac{3}{{\sqrt{x}}}-\root{3}{x}})^n}$的展開(kāi)式中所有項(xiàng)系數(shù)的絕對(duì)值之和為1024,則該展開(kāi)式中的常數(shù)項(xiàng)是( 。
A.-270B.270C.-90D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)等差數(shù)列{an }的前n項(xiàng)和為Sn,已知a1=9,a2為整數(shù),且Sn≤S5
(1)求{an }的通項(xiàng)公式;
(2)設(shè)數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和為Tn,求證:${T_n}≤\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知點(diǎn)A(a,b)和點(diǎn)B(1,0)在直線3x-4y+10=0兩側(cè),給出下列說(shuō)法:
①3a-4b+10>0;
②當(dāng)a>0時(shí),a+b有最小值,無(wú)最大值;
③$\sqrt{{a^2}+{b^2}}>2$;
④當(dāng)a>0且a≠1,b>0時(shí),$\frac{a-1}$的取值范圍為$(-∞,-\frac{5}{2})∪(\frac{3}{4},+∞)$.
其中所有正確說(shuō)法的序號(hào)是( 。
A.①②B.②③C.②③④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)與拋物線${y^2}=4\sqrt{3}x$的焦點(diǎn)重合,長(zhǎng)軸長(zhǎng)等于圓x2+y2-2x-15=0的半徑,則橢圓C的方程為( 。
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{16}+\frac{y^2}{4}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案