20.某市居民用水擬實行階梯水價,每人月用水量中不超過w立方米的部分按4元/立方米收費,超出w立方米的部分按10元/立方米收費,從該市隨機調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如圖頻率分布直方圖:

(1)如果w為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價格為4元/立方米,w至少定為多少?
(2)假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,當w=3時,估計該市居民該月的人均水費.

分析 (1)由頻率分布直方圖得:用水量在[0.5,1)的頻率為0.1,用水量在[1,1.5)的頻率為0.15,用水量在[1.5,2)的頻率為0.2,用水量在[2,2.5)的頻率為0.25,用水量在[2.5,3)的頻率為0.15,用水量在[3,3.5)的頻率為0.05,用水量在[3.5,4)的頻率為0.05,用水量在[4,4.5)的頻率為0.05,由此能求出為使80%以上居民在該用的用水價為4元/立方米,w至少定為3立方米.
(2)當w=3時,利用頻率分布直方圖能求出該市居民的人均水費.

解答 解:(1)由頻率分布直方圖得:
用水量在[0.5,1)的頻率為0.1,
用水量在[1,1.5)的頻率為0.15,
用水量在[1.5,2)的頻率為0.2,
用水量在[2,2.5)的頻率為0.25,
用水量在[2.5,3)的頻率為0.15,
用水量在[3,3.5)的頻率為0.05,
用水量在[3.5,4)的頻率為0.05,
用水量在[4,4.5)的頻率為0.05,
∵用水量小于等于3立方米的頻率為85%,
∴為使80%以上居民在該用的用水價為4元/立方米,
∴w至少定為3立方米.
(2)當w=3時,該市居民的人均水費為:
(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,
∴當w=3時,估計該市居民該月的人均水費為10.5元.

點評 本題考查頻率分布直方圖的應(yīng)用,考查當w=3時,該市居民該月的人均水費的估計的求法,是中檔題,解題時要認真審題,注意頻率分布直方圖的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=∅,定義ST=0;若T={t1,t2,…,tk},定義ST=${a}_{{t}_{1}}$+${a}_{{t}_{2}}$+…+${a}_{{t}_{k}}$.例如:T={1,3,66}時,ST=a1+a3+a66.現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T⊆{1,2,…,k},求證:ST<ak+1;
(3)設(shè)C⊆U,D⊆U,SC≥SD,求證:SC+SC∩D≥2SD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù)01234≥5
保費0.85aa1.25a1.5a1.75a2a
隨機調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:
出險次數(shù)01234≥5
頻數(shù)605030302010
(I)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”.求P(A)的估計值;
(Ⅱ)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”.求P(B)的估計值;
(Ⅲ)求續(xù)保人本年度的平均保費估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(2,f(2))處的切線方程為y=(e-1)x+4,
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=($\sqrt{3}$,1),則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)(1+2i)(a+i)的實部與虛部相等,其中a為實數(shù),則a=( 。
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設(shè)向量$\overrightarrow{a}$=(x,x+1),$\overrightarrow$=(1,2),且$\overrightarrow{a}$⊥$\overrightarrow$,則x=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域為R.當x<0時,f(x)=x3-1;當-1≤x≤1時,f(-x)=-f(x);當x>$\frac{1}{2}$時,f(x+$\frac{1}{2}$)=f(x-$\frac{1}{2}$).則f(6)=(  )
A.-2B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.同時拋擲兩枚質(zhì)地均勻的硬幣,當至少有一枚硬幣正面向上時,就說這次試驗成功,則在2次試驗中成功次數(shù)X的均值是$\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案