19.已知圓C的圓心是直線$\left\{\begin{array}{l}{x=t}\\{y=1+t}\end{array}\right.$(t為參數(shù))與x軸的交點(diǎn),且圓C與直線x+y+3=0相切,則圓C的方程為( 。
A.(x+1)2+y2=2B.(x-1)2+y2=2C.x2+(y+1)2=2D.x2+(y-1)2=2

分析 化參數(shù)方程為普通方程求出圓心坐標(biāo),計(jì)算圓心到直線x+y+3=0的距離得出半徑,即可得出圓C的方程.

解答 解:直線$\left\{\begin{array}{l}{x=t}\\{y=1+t}\end{array}\right.$(t為參數(shù))的普通方程為y=x+1,
∴圓C的圓心為(-1,0),
∵圓C與直線x+y+3=0相切,
圓C的半徑r=$\frac{|-1+0+3|}{\sqrt{2}}$=$\sqrt{2}$,
∴圓C的方程為(x+1)2+y2=2.
故選A.

點(diǎn)評(píng) 本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直線和圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=$\left\{\begin{array}{l}x+2\\{x^2}\\-2x+8\end{array}$$\begin{array}{l}({x≤-1})\\({-1<x<2})\\({x≥2})\end{array}$
(1)畫出f(x)的圖象;
(2)求f(f(-1))的值;
(3)方程f(x)=a有兩個(gè)不同的實(shí)根,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)f(x)=ln(x2-tx+2)+1.
①若t=e,求f(e)的值;
②若函數(shù)f(x)的定義域?yàn)镽,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=x2-x-2,x∈[-2,2],在定義域內(nèi)任取一點(diǎn)x0,使f(x0)≤0的概率是( 。
A.$\frac{1}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖(算法流程圖)的輸出值x為( 。 
   
A.13B.12C.22D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在一次隨機(jī)試驗(yàn)中,彼此互斥的事件A,B,C,D的概率分別是0.2,0.1,0.3,0.4,則下列說法正確的是(  )
A.A+B與C是互斥事件,也是對(duì)立事件
B.B+C與D是互斥事件,也是對(duì)立事件
C.A+C與B+D是互斥事件,但不是對(duì)立事件
D.A與B+C+D是互斥事件,也是對(duì)立事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a∈R,則“a<1”是“a2<a”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.以等腰直角三角形ABC斜邊BC上的高AD為折痕,將△ABC折成二面角C-AD-B為多大時(shí),在折成的圖形中,△ABC為等邊三角形( 。
A.30°B.60°C.90°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.∫${\;}_{0}^{1}$(e2+2x)dx=e2+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案