分析 先畫(huà)出可行域,得到角點(diǎn)坐標(biāo).利用k與0的大小,分類討論,結(jié)合目標(biāo)函數(shù)的最值求解即可.
解答 解:實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y-4≤0}\\{2x-3y-8≤0}\\{x≥1}\end{array}\right.$的可行域如圖:得:A(1,3),B(1,-2),C(4,0).
①當(dāng)k=0時(shí),目標(biāo)函數(shù)z=kx-y的最大值為12,最小值為0,不滿足題意.
②當(dāng)k>0時(shí),目標(biāo)函數(shù)z=kx-y的最大值為12,最小值為0,當(dāng)直線z=kx-y過(guò)C(4,0)時(shí),Z取得最大值12.
當(dāng)直線z=kx-y過(guò)A(1,3)時(shí),Z取得最小值0.
可得k=3,滿足題意.
③當(dāng)k<0時(shí),目標(biāo)函數(shù)z=kx-y的最大值為12,最小值為0,當(dāng)直線z=kx-y過(guò)C(4,0)時(shí),Z取得最大值12.可得k=-3,
當(dāng)直線z=kx-y過(guò),B(1,-2)時(shí),Z取得最小值0.可得k=-2,
無(wú)解.
綜上k=3
故答案為:3.
點(diǎn)評(píng) 本題主要考查簡(jiǎn)單線性規(guī)劃以及分類討論思想.解決本題計(jì)算量較大.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\frac{2}{5}]$ | B. | $(0,\frac{2}{3}]$ | C. | (0,1] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | $\frac{11}{5}$ | C. | $\frac{9}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3-2\sqrt{2}}{8}$ | B. | $\frac{2-\sqrt{2}}{4}$ | C. | $\frac{5-2\sqrt{2}}{8}$ | D. | $\frac{5-2\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com