已知圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設(shè)圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,過點A且與x軸垂直的直線為l2,直線PM交直線l2于點P′,直線QM交直線l2于點Q′.求證:以P′Q′為直徑的圓C總經(jīng)過定點,并求出定點坐標.
【答案】
分析:(1)由已知中直線l
1過點A(3,0),我們可以設(shè)出直線的點斜式方程,化為一般式方程后,代入點到直線距離公式,根據(jù)直線與圓相切,圓心到直線的距離等于半徑,可以求出k值,進而得到直線l
1的方程;
(2)由已知我們易求出P,Q兩個點的坐標,設(shè)出M點的坐標,我們可以得到點P′與Q′的坐標(含參數(shù)),進而得到以P′Q′為直徑的圓的方程,根據(jù)圓的方程即可判斷結(jié)論.
解答:解:(1)由題意,可設(shè)直線l
1的方程為y=k(x-3),
即kx-y-3k=0…(2分)
又點O(0,0)到直線l
1的距離為
,解得
,
所以直線l
1的方程為
,
即
或
…(5分)
(2)對于圓O的方程x
2+y
2=1,令x=±1,即P(-1,0),Q(1,0).
又直線l
2方程為x=3,設(shè)M(s,t),則直線PM方程為
.
解方程組
,得
,
同理可得:
.…(9分)
所以圓C的圓心C的坐標為
,半徑長為
,
又點M(s,t)在圓上,又s
2+t
2=1.故圓心C為
,半徑長
.
所以圓C的方程為
,…(11分)
即
=0
即
,
又s
2+t
2=1
故圓C的方程為
所以圓C經(jīng)過定點,y=0,則x=
,
所以圓C經(jīng)過定點且定點坐標為
(15分)
點評:本題考查的知識是直線和圓的方程的應用,其中熟練掌握直線與圓不同位置關(guān)系時,點到直線的距離與半徑的關(guān)系,弦長公式等是解答本題的關(guān)鍵.