分析 (I)利用中點坐標公式可得P,再利用向量夾角公式即可得出.
(II)設(shè)P(x,y),由點P在線段AB的延長線上,且$|{\overrightarrow{AP}}|=\frac{3}{2}|{\overrightarrow{PB}}|$,可得$\overrightarrow{AP}=\frac{3}{2}\overrightarrow{BP}$,即$({x-4,y-3})=\frac{3}{2}({x-2,y+1})$,利用向量相等即可得出.
解答 解:(Ⅰ)∵點P是線段AB的中點,∴點P的坐標為$({\frac{2+4}{2},\frac{3-1}{2}})$,即(3,1),
則$\overrightarrow{OP}=({3,1})$.
∴$cosθ=\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|{\overrightarrow{OA}}|•|{\overrightarrow{OP}}|}}$=$\frac{4×3+3×1}{{\sqrt{{4^2}+{3^2}}×\sqrt{{3^2}+{1^2}}}}$=$\frac{{3\sqrt{10}}}{10}$.
(Ⅱ)設(shè)P(x,y),由點P在線段AB的延長線上,且$|{\overrightarrow{AP}}|=\frac{3}{2}|{\overrightarrow{PB}}|$,
得$\overrightarrow{AP}=\frac{3}{2}\overrightarrow{BP}$,∴$({x-4,y-3})=\frac{3}{2}({x-2,y+1})$,
即$\left\{\begin{array}{l}2x-8=3x-6\\ 2y-6=3y+3\end{array}\right.$,
解得:$\left\{\begin{array}{l}x=-2\\ y=-9\end{array}\right.$,
∴點P的坐標為(-2,-9).
點評 本題考查了向量的線性運算及其坐標運算性質(zhì)、向量夾角公式、數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{6}$ | D. | $\frac{3\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{10}{11}$ | B. | $\frac{5}{6}$ | C. | $\frac{5}{11}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | i+2 | B. | i-2 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com