是否存在同時(shí)滿(mǎn)足以下條件的復(fù)數(shù)z1,z2;
(1)
z1-
.
z1
z2-
.
z2
=0;(2)
2
z2+6
=
.
z2
+6
;(3)z1z22+z2+2=0,如果不存在說(shuō)明理由;如果存在,請(qǐng)求出z1和z2
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由(1)可得z1 是實(shí)數(shù),z2不是實(shí)數(shù),可設(shè)z1=a,且a∈R,z2=c+di,c、d∈R,d≠0.由(2),可得 c2+d2+12c=-34.由(3)可得 ac2-ad2+c+2=0,且2cd+d=0.解方程組可得d無(wú)解,可得不存在同時(shí)滿(mǎn)足條件的復(fù)數(shù)z1,z2
解答: 解:由(1)
z1-
.
z1
z2-
.
z2
=0 可得z1=
.
z1
,且z2
.
z2
,故z1 是實(shí)數(shù),z2不是實(shí)數(shù),
故可設(shè)z1=a,且a∈R,z2=c+di,c、d∈R,d≠0.
由(2)
2
z2+6
=
.
z2
+6
,可得|z2|2+6(z2+
.
z2
)=-34,即 c2+d2+12c=-34.
由(3)z1z22+z2+2=0,可得a(c2-d2+2cdi )+c+di+2=0,即 ac2-ad2+c+2+(2cd+d)i=0,
∴ac2-ad2+c+2=0,2cd+d=0.
解得c=-
1
2
,d2=-
113
4
,故d不存在,故不存在同時(shí)滿(mǎn)足條件的復(fù)數(shù)z1,z2
點(diǎn)評(píng):本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則的應(yīng)用,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的圖象關(guān)于y軸對(duì)稱(chēng),其圖象上相鄰的兩個(gè)最高點(diǎn)間的距離為2π,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
a
b
,
c
兩兩夾角為60°,其模為1,則|
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知空間四邊形ABCD,及兩條對(duì)角線AC、BD,AB=AC=AD=a,BD=DC=CD=b,AB⊥面BCD,垂足為H,求平面ABD與平面BCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:sin2α+cos2
π
6
+α)+
1
2
sin(2α+
π
6
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,直線l:x-
3
y-2=0被以原點(diǎn)為極點(diǎn),x軸正半軸的極坐標(biāo)方程ρ=2cosθ的曲線C所截,則所截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)a1為常數(shù),且an+1=3n-2an(n∈N+).
(1)證明:{an-
3n
5
}是等比數(shù)列;
(2)若a1=
3
2
,{an}中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫(xiě)出這三項(xiàng),若不存在說(shuō)明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-x2,a∈R,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥1時(shí),f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

網(wǎng)絡(luò)時(shí)代的到來(lái),很多家庭都接入了網(wǎng)絡(luò),電信局規(guī)定了撥號(hào)入網(wǎng)兩種收費(fèi)方式,用戶(hù)可以任選其一:A:計(jì)時(shí)制:0.05元/分;B:全月制:54元/月(限一部個(gè)人住宅電話入網(wǎng)).此外B種上網(wǎng)方式要加收通信費(fèi)0.02元/分.
(1)用戶(hù)某月上網(wǎng)的時(shí)間為x小時(shí),兩種收費(fèi)方式的費(fèi)用分別為y1(元)、y2(元),寫(xiě)出y1、y2與x之間的函數(shù)關(guān)系式;
(2)在上網(wǎng)時(shí)間相同的條件下,請(qǐng)你幫該用戶(hù)選擇哪種方式上網(wǎng)更省錢(qián)?

查看答案和解析>>

同步練習(xí)冊(cè)答案