18.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$若目標(biāo)函數(shù)Z=ax+y的最大值為3a+9,最小值為3a-3,則實(shí)數(shù)a的取值范圍是( 。
A.{a|-1≤a≤1}B.{a|a≤-1}C.{a|a≤-1或a≥1}D.{a|a≥1}

分析 由約束條件作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合分類討論進(jìn)行求解.

解答 解:由z=ax+y得y=-ax+z,直線y=-ax+z是斜率為-a,y軸上的截距為z的直線,
作出不等式組$\left\{\begin{array}{l}{x-y+6≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:
則A(3,9),B(-3,3),C(3,-3),
∵z=ax+y的最大值為3a+9,最小值為3a-3,
可知目標(biāo)函數(shù)經(jīng)過(guò)A取得最大值,經(jīng)過(guò)C取得最小值,
若a=0,則y=z,此時(shí)z=ax+y經(jīng)過(guò)A取得最大值,經(jīng)過(guò)C取得最小值,滿足條件,
若a>0,則目標(biāo)函數(shù)斜率k=-a<0,
要使目標(biāo)函數(shù)在A處取得最大值,在C處取得最小值,
則目標(biāo)函數(shù)的斜率滿足-a≥kBC=-1,
即a≤1,可得a∈(0,1].
若a<0,則目標(biāo)函數(shù)斜率k=-a>0,
要使目標(biāo)函數(shù)在A處取得最大值,在C處取得最小值,可得-a≤kBA=1
∴-1≤a<0,綜上a∈[-1,1]
故選:A.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件確定A,B是最優(yōu)解是解決本題的關(guān)鍵.注意要進(jìn)行分類討論,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2lnx+$\frac{a}{x}$-2lna-k$\frac{x}{a}$
(1)若k=0,證明f(x)>0
(2)若f(x)≥0,求k的取值范圍;并證明此時(shí)f(x)的極值存在且與a無(wú)關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知拋物線y2=8x的一條弦AB經(jīng)過(guò)焦點(diǎn)F,O為坐標(biāo)原點(diǎn),D為線段OB的中點(diǎn),延長(zhǎng)OA至點(diǎn)C,使|OA|=|AC|,過(guò)C,D向y軸作垂線,垂足分別為E,G,則|EG|的最小值為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在銳角△ABC中,D為AC邊的中點(diǎn),且BC=$\sqrt{2}BD=2\sqrt{2}$,O為△ABC外接圓的圓心,且cos∠AOC=-$\frac{3}{4}$.
(1)求∠ABC的余弦值,
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z=($\frac{1+i}{\sqrt{2}}$)2(其中i為虛數(shù)單位),則$\overline{z}$=(  )
A.1B.-iC.-1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某學(xué)校星期一至星期五每天上午共安排五節(jié)課,每節(jié)課的時(shí)間為40分鐘,第一節(jié)課上課時(shí)間為7:50~8:30,課間休息10分鐘,某同學(xué)請(qǐng)假后返校,若他在8:50~9:30之間隨機(jī)到達(dá)教室,則他聽(tīng)第二節(jié)課的時(shí)間不少于20分鐘的概率是( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖是一個(gè)算法的程序框圖,如果輸入i=0,S=0,那么輸出的結(jié)果為( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.甲在微信群中發(fā)布6元“拼手氣”紅包一個(gè),被乙、丙、丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)不少于其他任何人)的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|7<2x<33,x∈N},B={x|log3(x-1)<1},則A∩(∁RB)等于( 。
A.{4,5}B.{3,4,5}C.{x|3≤x<4}D.{x|3≤x≤5}

查看答案和解析>>

同步練習(xí)冊(cè)答案