分析 利用求導(dǎo)法則求出曲線方程的導(dǎo)函數(shù),把x=0代入導(dǎo)函數(shù)求出的導(dǎo)函數(shù)值即為切線方程的斜率,而切線方程的斜率為1,求出a,可得切點坐標(biāo),然后把切點坐標(biāo)代入直線方程,即可求出b的值.
解答 解:由題意可知曲線在x=0出切線方程的斜率為1,
求導(dǎo)得:y′=aex-3,所以y′|x=0=a-3=1,即a=4,
把x=0代入f(x)=aex-3x+1得f(0)=5
(0,5)代入直線方程得:b=5.
故答案為:5.
點評 此題考查學(xué)生會利用導(dǎo)數(shù)求曲線上過某點切線方程的斜率,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | (0,$\frac{1}{2}$] | C. | ($\frac{1}{2}$,2) | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | cos10° | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -sin10° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com