12.求由曲線y=x2+1與y=3x-1,x=0,x=2所圍成的平面圖形的面積(畫出圖形)

分析 首先由題意畫出圖形,利用定積分表示曲邊梯形的面積,然后計(jì)算定積分.

解答 解:由題意,由曲線y=x2+1與y=3x-1,x=0,x=2所圍成的平面圖形
${S_{陰影}}=\int_1^2{\left\{{3x-1-({x^2}+1)}\right\}}dx$+${∫}_{0}^{1}({x}^{2}+1-3x+1)dx$
=$\int_1^2{(3x-{x^2}-2)}dx$+${∫}_{1}^{2}$(x2+3x+2)dx
=$(\frac{3}{2}{x}^{2}-\frac{1}{3}{x}^{3}-2x){|}_{1}^{2}$+($\frac{1}{3}{x}^{3}-\frac{3}{2}{x}^{2}+2x$)|${\;}_{0}^{1}$
=$\frac{1}{6}$+$\frac{1}{3}-\frac{3}{2}+2$
=1.

點(diǎn)評 本題考查了利用定積分求曲邊梯形的面積,利用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,點(diǎn)P是圓O:x2+y2=4上一點(diǎn),圓O在點(diǎn)P處的切線為m,PQ垂直x軸于點(diǎn)Q(P、Q不重合),線段PQ的重點(diǎn)為E,點(diǎn)A(-2,0),直線l:x=2與直線m交于點(diǎn)M.
(1)若點(diǎn)P(1,$\sqrt{3}$),求直線m的方程;
(2)當(dāng)P在圓O上運(yùn)動(dòng)時(shí),證明A,E,M三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與直線${l_1}:y=\frac{1}{2}x$,${l_2}:y=-\frac{1}{2}x$,過橢圓上一點(diǎn)P作l1,l2的平行線,分別交l1,l2于M,N兩點(diǎn).若|MN|為定值,則$\sqrt{\frac{a}}$的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(x3+x)3(-7+$\frac{1}{{x}^{2}}$)的展開式x3中的系數(shù)為(  )
A.3B.-4C.4D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的個(gè)數(shù)是( 。
(1)三點(diǎn)確定一個(gè)平面
(2)一條直線和一個(gè)點(diǎn)確定一個(gè)平面
(3)兩條直線確定一個(gè)平面
(4)三角形和梯形一定為平面圖形.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x3-2x2+x,將函數(shù)y=|f(x)|的圖象沿著x軸作對稱變換得到函數(shù)y=g(x)的圖象,函數(shù)h(x)=$\left\{\begin{array}{l}g(x),x<1\\ lnx,x≥1\end{array}$,若關(guān)于x的不等式h(x)-kx≤0在R上恒成立,則實(shí)數(shù)k的取值范圍是( 。
A.$[{\frac{1}{e^2},1}]$B.$[{\frac{2}{e},1}]$C.$[{\frac{1}{e},1}]$D.[1,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.《孫子算經(jīng)》是我國古代數(shù)學(xué)專著,其中一個(gè)問題為“今有出門,望見九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雛,雛有九毛,毛有九色”.問:巢有幾何?6561.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)p:0<x<5,q:-5<x-2<5,那么p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市在“兩會(huì)”召開前,某政協(xié)委員針對自己提出的“環(huán)保提案”對某處的環(huán)境狀況進(jìn)行了實(shí)地調(diào)研,據(jù)測定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為k(k>0).現(xiàn)已知相距36km的A,B兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù)a,b,它們連線上任意一點(diǎn)c處的污染指數(shù)y等于兩化工廠對該處的污染指數(shù)之和.
(1)設(shè)A,C兩處的距離為x,試將y表示為x的函數(shù);
(2)若a=1時(shí),y在x=6處取最小值,試求b的值.

查看答案和解析>>

同步練習(xí)冊答案