20.已知集合A={x|x2-4x<0,x∈N*},B={x|$\frac{8}{x-1}$∈N*,x∈N*},則∁RA∩B元素的個(gè)數(shù)為(  )
A.1B.2C.3D.4

分析 求解一元二次不等式化簡A,化描述法為列舉法得到B,然后利用交、并、補(bǔ)集的混合運(yùn)算求得∁RA∩B,則答案可求.

解答 解:由x2-4x<0,得0<x<4,
∴A={x|x2-4x<0,x∈N*}={1,2,3},
又B={x|$\frac{8}{x-1}$∈N*,x∈N*}={2,3,5,9},
∴∁RA∩B={5,9}.
故選:B.

點(diǎn)評(píng) 本題考查交、并、補(bǔ)集的混合運(yùn)算,考查了不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某射手射中10環(huán)的概率為0.22,那么,在一次射擊訓(xùn)練中,該射手射擊一次不夠10環(huán)的概率為0.78.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$=(4,-3),|$\overrightarrow$|=1,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{21}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.若a>1,解關(guān)于x的不等式$\frac{ax}{x-2}$>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a=2${\;}^{-\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$$\frac{1}{5}$,則a、b、c的大小關(guān)系是b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)和g(x)的定義域均是(-$\frac{1}{2}$,+∞),其中f(x)=2(x+1)ex+3,g(x)=x2+4x+2,則不等式f(x)>g(x)+2e3-2的解集是(${e}^{\frac{5}{2}}$-2e3-2,+∞)(e是自然對(duì)數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如果函數(shù)f(x)=-ax的圖象過點(diǎn)$({3,-\frac{1}{8}})$,那么a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.命題p:“|a|+|b|≤1”;命題q:“對(duì)任意的x∈R,不等式asinx+bcosx≤1恒成立”,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知:f(x)=cos2x+$\sqrt{3}$sinxcosx.
(1)若x∈R,求滿足f(x)=0的x的值;
(2)若x∈R,求f(x)的最大值和最小值,并寫出取最值時(shí)相應(yīng)的x的值;
(3)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案