【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求的極坐標方程;
(2)將曲線上所有點的橫坐標不變,縱坐標縮短到原來的倍,得到曲線,若與的交點為(異于坐標原點),與的交點為,求.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓:()上,且點到左焦點的距離為3.
(1)求橢圓的標準方程;
(2)設為坐標原點,與直線平行的直線交橢圓于不同兩點、,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的方程為(),,分別為橢圓的左右焦點,A,B為橢圓E上關(guān)于原點對稱兩點,點M為橢圓E上異于A,B一點,直線和直線的斜率和滿足:.
(1)求橢圓E的標準方程;
(2)過作直線l交橢圓于C,D兩點,且(),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】趙爽是我國漢代數(shù)學家、天文學家,他在注解《周髀算經(jīng)》時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”,它被2002年國際數(shù)學家大會選定為會徽.“趙爽弦圖”是以弦為邊長得到的正方形,該正方形由4個全等的直角三角形加上中間一個小正方形組成類比“趙爽弦圖”,可類似地構(gòu)造如圖所示的圖形它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形設DF=2AF=2,若在大等邊三角形中隨機取一點,則此點取自三個全等三角形(陰影部分)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù)).
(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若在上的最大值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com