【題目】“斗拱”是中國(guó)古代建筑中特有的構(gòu)件,從最初的承重作用,到明清時(shí)期集承重與裝飾作用于一體。在立柱頂、額枋和檐檁間或構(gòu)架間,從枋上加的一層層探出成弓形的承重結(jié)構(gòu)叫拱,拱與拱之間墊的方形木塊叫斗。如圖所示,是“散斗”(又名“三才升”)的三視圖,則它的體積為( )

A. B. C. 53 D.

【答案】B

【解析】

由已知三視圖先還原幾何體,得到組合體,再利用柱體,臺(tái)體的體積公式計(jì)算可得到答案.

由已知中的三視圖可得該幾何體下半部分是一個(gè)下底面邊長(zhǎng)為3上底面邊長(zhǎng)為4的正方形、高為1的棱臺(tái),上半部分為一個(gè)棱柱,截去中間一個(gè)小棱柱,所得的組合體,如圖:

棱臺(tái)的體積為:

=)=

上半部分的體積為:

=1.51=248=16,

∴V=

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形ABCD的外接圓,點(diǎn)P在劣弧AB(P不與A、B重合),DP分別交AO、AB于點(diǎn)Q、T, 在點(diǎn)P處的切線交DA的延長(zhǎng)線于點(diǎn)E,劣弧BC的中點(diǎn)為F.

(1):何時(shí)F、T、E三點(diǎn)共線?請(qǐng)說明理由.

(2)求比值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(1)若拋物線的焦點(diǎn)在圓上,且和圓 的一個(gè)交點(diǎn),求

(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正整數(shù)數(shù)列滿足試求通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都乘以同一個(gè)非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a

B.設(shè)有一個(gè)回歸方程,變量x增加1個(gè)單位時(shí),y平均減少5個(gè)單位

C.線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱

D.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N1,σ2)(σ0),則Pξ1)=0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)國(guó)家“陽光體育運(yùn)動(dòng)”的號(hào)召,某學(xué)校在了解到學(xué)生的實(shí)際運(yùn)動(dòng)情況后,發(fā)起以“走出教室,走到操場(chǎng),走到陽光”為口號(hào)的課外活動(dòng)倡議。為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,從高一高二基礎(chǔ)年級(jí)與高三三個(gè)年級(jí)學(xué)生中按照4:3:3的比例分層抽樣,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),得到如圖所示的頻率分布直方圖。

(1)據(jù)圖估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間.并估計(jì)高一年級(jí)每周平均體育運(yùn)動(dòng)時(shí)間不足4小時(shí)的人數(shù);

(2)規(guī)定每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí)記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間不少于6小時(shí),請(qǐng)完成下列列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間是否“優(yōu)秀”與年級(jí)有關(guān)”.

基礎(chǔ)年級(jí)

高三

合計(jì)

優(yōu)秀

非優(yōu)秀

合計(jì)

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2,na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場(chǎng)隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動(dòng)物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測(cè)接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).

1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:

①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;

②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.

比較隨機(jī)變量的數(shù)學(xué)期望的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī),得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

b

乙班

c

30

總計(jì)105

已知在全部105人中隨機(jī)抽取1人,成績(jī)優(yōu)秀的概率為,則下列說法正確的是(

參考公式:

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A.列聯(lián)表中c的值為30,b的值為35

B.列聯(lián)表中c的值為15b的值為50

C.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,能認(rèn)為成績(jī)與班級(jí)有關(guān)系

D.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,不能認(rèn)為成績(jī)與班級(jí)有關(guān)系

查看答案和解析>>

同步練習(xí)冊(cè)答案