8.三棱錐A-BCD的底面是正三角形,側(cè)棱相等且兩兩垂直,點(diǎn)P是該棱錐表面(包括棱)上一點(diǎn),且P到四個(gè)頂點(diǎn)的距離有且只有兩個(gè)不同的值,則這樣的點(diǎn)P的個(gè)數(shù)有( 。
A.5B.6C.8D.11

分析 由題意符合條件的點(diǎn)有三類,一在棱的中點(diǎn),二在面的外心,三為四面體的頂點(diǎn),問題得以解決.

解答 解:如圖,

符合條件的點(diǎn)P有三類:(1)6條棱的中點(diǎn);(2)4個(gè)面的外心;③四個(gè)頂點(diǎn).共14個(gè)點(diǎn).
由于三個(gè)側(cè)面的外心均與底邊中點(diǎn)重合,
∴符合條件的點(diǎn)P有14-3=11.
故選:D.

點(diǎn)評(píng) 本題主要考查空間中點(diǎn)、線、面的位置關(guān)系,考查空間想象能力和思維能力,關(guān)鍵是理解幾何圖形,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.“B=60°”是“△ABC三個(gè)內(nèi)角A、B、C成等差數(shù)列”的(  )
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的邊是a,b,c,且滿足a2+c2-b2=ac.
(1)求角B的大小;
(2)設(shè)$\overrightarrow{m}$=(-3,-1),$\overrightarrow{n}$=(sinA,cos2A),求$\overrightarrow{m}$•$\overrightarrow{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.過x軸上一點(diǎn)P作x軸的垂線,分別交函數(shù)y=sinx,y=cosx,y=tanx的圖象于P1,P2,P3,若$\overrightarrow{P{P_3}}=\frac{3}{8}\overrightarrow{P{P_2}}$,則$|\overrightarrow{P{P_1}}|$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知如圖,PA、PB、PC互相垂直,且長(zhǎng)度相等,E為AB中點(diǎn),則直線CE與平面PAC所成角的正弦值為$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如果函數(shù)y=sinωx•cosωx(ω>0)的最小正周期為4π,那么常數(shù)ω為( 。
A.$\frac{1}{4}$B.2C.$\frac{1}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.等差數(shù)列{an}中,a2=4,a4+a7=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an-2+n,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)α,β是兩個(gè)不同的平面,a,b是兩條不同的直線,下列四個(gè)命題中正確的命題是(  )
A.若a∥α,b∥α,則a∥bB.若a∥α,b∥β,a∥b,則α∥β
C.若a⊥α,a?β,則α⊥βD.若a,b在α內(nèi)的射影相互垂直,則a⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=1,2cosC+c=2b.
(Ⅰ)求A;
(Ⅱ)若b=$\frac{1}{2}$,求sinC.

查看答案和解析>>

同步練習(xí)冊(cè)答案