分析 建立空間直角坐標系,求出平面PAC的法向量,向量CE,利用空間向量的數(shù)量積求解即可.
解答 解:PA、PB、PC互相垂直,以P為坐標原點,PA、PB、PC分別為x,y,z軸,
設PA=2,則平面PAC的法向量可以為$\overrightarrow{n}$=(2,0,0),E(1,0,1),C(0,2,0),
$\overrightarrow{CE}$=(1,-2,1),
直線CE與平面PAC所成角的正弦值為:$|\frac{\overrightarrow{n}•\overrightarrow{CE}}{|\overrightarrow{n}||\overrightarrow{CE}|}|$=$\frac{2}{2•\sqrt{6}}$=$\frac{\sqrt{6}}{6}$.
故答案為:$\frac{\sqrt{6}}{6}$.
點評 本題考查直線與平面所成角的求法.考查空間向量數(shù)量積的應用,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x-2 | B. | $y={x^{\frac{1}{3}}}$ | C. | y=2|x| | D. | y=|x-1|+|x+1| |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 8 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1] | B. | [1,+∞) | C. | [-1,+∞) | D. | (-∞,-3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
單價x(萬元) | 8 | 8.2 | 8.4 | 8.8 | 8.6 | 9 |
銷量y(件) | 90 | 84 | 83 | 75 | 80 | 68 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{81}{4}$ | B. | 6 | C. | $\frac{81}{2}$ | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com