16.f(x)=x2+x+1,則f(f(2))=57.

分析 由已知求出f(2)=22+2+1=7,從而f(f(2))=f(7),由此能求出結(jié)果.

解答 解:∵f(x)=x2+x+1,
∴f(2)=22+2+1=7,
f(f(2))=f(7)=72+7+1=57.
故答案為:57.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+5cosφ}\\{y=\sqrt{3}+5sinφ}\end{array}\right.$(φ為參數(shù)),一坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為2ρcos(θ-$\frac{π}{3}$)=23
(1)把圓C1、C2的方程化為普通方程;
(2)求圓C1上的點到直線C2的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.為了調(diào)查城市PM2.5的值,按地域把48個城市分為甲、乙、丙三組,對應(yīng)的城市數(shù)分別為10,18,20.若用分層抽樣的方法抽取16個城市,則乙組中應(yīng)抽取的城市數(shù)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.己知函數(shù)f(x)=x3+ax2+bx+a2在x=l處有極值10,則f($\sqrt{2}$)+f′($\sqrt{2}$)+$\sqrt{2}$等于( 。
A.. 11B..12C.19D.12或19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.“sinα=cosα”是“sin2α=1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列各點中,能作為函數(shù)$y=tan(x+\frac{π}{5})$(x∈R且$x≠kπ+\frac{3π}{10}$,k∈Z)的一個對稱中心的點是(  )
A.(0,0)B.$(\frac{π}{5},0)$C.(π,0)D.$(\frac{3π}{10},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=xlnx,g(x)=x3+ax2+x.
(Ⅰ)討論函數(shù)g(x)的極值點的個數(shù);
(Ⅱ)若不等式2f(x)≤g′(x)在x∈(0,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(3,4),當(dāng)$\overrightarrow{a}$⊥$\overrightarrow$時,sin2α+sin2α=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)滿足f(x)=2f($\frac{1}{x}$)•x-1,則f(4)的值是( 。
A.3B.-3C.-1D.1

查看答案和解析>>

同步練習(xí)冊答案