9.冪函數(shù)f(x)=xm是偶函數(shù),在x∈(0,+∞)為增函數(shù),則m的值為(2)(3)
(1)-1;(2)2;(3)4;(4)-1或2.

分析 由冪函數(shù)f(x)=xm是偶函數(shù),在x∈(0,+∞)為增函數(shù),知m是正偶數(shù).

解答 解:∵冪函數(shù)f(x)=xm是偶函數(shù),在x∈(0,+∞)為增函數(shù),
∴m是正偶數(shù),
∴m的值可能是2或4.
故答案為:(2)(3).

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意冪函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量$\overrightarrow m=({cosA,cosB})$,$\overrightarrow n=({b-2c,a})$,且$\overrightarrow m⊥\overrightarrow n$.
(1)求角A的大小;
(2)若a=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M={x|x2+3x<4},N={-2,-1,0,1,2},則M∩N=( 。
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若c=$\sqrt{2}$,b=$\sqrt{6}$,B=120°,則a等于( 。
A.$\sqrt{6}$B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線l,m,n,a,b,平面α,β,γ,有以下命題:
①l∥α,l⊥a⇒a⊥α
②m∥α,n∥α⇒n∥m
③m⊥γ,n⊥γ⇒m∥n
④α⊥γ,β⊥γ⇒α∥β
⑤a∥b,a⊥α⇒b⊥α
⑥a?α,b?β,α∥β⇒a∥b
其中不正確的命題是①②④⑥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若曲線f(x)=ax+$\frac{1}{2}$x+lnx在點(diǎn)(1,f(1))處的切線與y=$\frac{7}{2}$x-1平行,則a=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與圓(x-3)2+y2=9相交于A,B兩點(diǎn),若|AB|=2,則該雙曲線的離心率為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.寫出由下列函數(shù)復(fù)合而成的函數(shù):
(1)y=cosu,u=1+x2;
(2)y=lnu,u=lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d,若a1<0,S12=S6,下列說法正確的是(  )
A.d<0B.S19<0
C.當(dāng)n=9時(shí)Sn取最小值D.S10>0

查看答案和解析>>

同步練習(xí)冊答案