【題目】已知函數f(x)=|x﹣a|﹣|x﹣5|.
(1)當a=2時,求證:﹣3≤f(x)≤3;
(2)若關于x的不等式f(x)≤x2﹣8x+20在R恒成立,求實數a的取值范圍.
【答案】(1)證明見解析.(2)
【解析】
(1)代入,利用絕對值不等式的性質可得,進而得證;
(2)分及兩種情況討論,每種情況下都把函數f(x)化為分段函數的形式,再根據題意轉化為關于的不等式,每種情況解出后最后取并集即可.
(1)證明:當a=2時,f(x)=|x﹣2|﹣|x﹣5|,
∴||x﹣2|﹣|x﹣5|||x﹣2﹣(x﹣5)|=3,
∴﹣3|x﹣2|﹣|x﹣5|3,即﹣3f(x)3;
(2)解:f(x)=|x﹣a|﹣|x﹣5|,
①當a5時,,則f(x)max=a﹣5,且y=x2﹣8x+20=x2﹣8x+16+4=(x﹣4)2+44,
要使f(x) x2﹣8x+20在R恒成立,則只需4a﹣5,則a9,此時5a9;
②當a<5時,,
需要恒成立,
∴,
∴,
綜合①②可知,0a9,即實數a的取值范圍為[0,9].
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,AB⊥BC,BB1BC,D是CC1的中點.
(1)證明:B1C⊥平面ABD;
(2)若AB=BC,E是A1C1的中點,求二面角A﹣BD﹣E的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩廠均生產某種零件.根據長期檢測結果:甲、乙兩廠生產的零件質量(單位:)均服從正態(tài)分布,在出廠檢測處,直接將質量在之外的零件作為廢品處理,不予出廠;其它的準予出廠,并稱為正品.
(1)出廠前,從甲廠生產的該種零件中抽取10件進行檢查,求至少有1片是廢品的概率;
(2)若規(guī)定該零件的“質量誤差”計算方式為:該零件的質量為,則“質量誤差”.按標準,其中“優(yōu)等”、“一級”、“合格”零件的“質量誤差”范圍分別是,、(正品零件中沒有“質量誤差”大于的零件),每件價格分別為75元、65元、50元.現(xiàn)分別從甲、乙兩廠生產的正品零件中隨機抽取100件,相應的“質量誤差”組成的樣本數據如下表(用這個樣本的頻率分布估計總體分布,將頻率視為概率):
質量誤差 | |||||||
甲廠頻數 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
乙廠頻數 | 25 | 30 | 25 | 5 | 10 | 5 | 0 |
(ⅰ)記甲廠該種規(guī)格的2件正品零件售出的金額為(元),求的分布列及數學期望;
(ⅱ)由上表可知,乙廠生產的該規(guī)格的正品零件只有“優(yōu)等”、“一級”兩種,求5件該規(guī)格零件售出的金額不少于360元的概率.
附:若隨機變量.則;,,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場進行抽獎促銷活動,抽獎箱中有大小完全相同的4個小球,分別標有“A”“B”“C”“D”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復以上操作,最多取4次,并規(guī)定若取出“D”字球,則停止取球.獲獎規(guī)則如下:依次取到標有““A”“B”“C”“D”字的球為一等獎;不分順序取到標有“A”“B”“C”“D”字的球,為二等獎;取到的4個球中有標有“A”“B”“C”三個字的球為三等獎.
(1)求分別獲得一、二、三等獎的概率;
(2)設摸球次數為,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時有效地對疫情數據進行流行病學統(tǒng)計分析,某地研究機構針對該地實際情況,根據該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關數據.
(1)請將列聯(lián)表填寫完整:
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | 27 | ||
無武漢旅行史 | 18 | ||
總計 | 27 | 54 |
(2)能否在犯錯誤的概率不超過0.025的前提下認為有武漢旅行史與有確診病例接觸史有關系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,過橢圓C:上一點P作x軸的垂線,垂足為,已知,分別為橢圓C的左、右焦點,A,B分別是橢圓C的右頂點、上頂點,且,.
(1)求橢圓C的方程;
(2)過點的直線l交橢圓C于M,N兩點,記直線PM,PN,MN的斜率分別為,問:是否為定值?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天上有些恒星的亮度是會變化的,其中一種稱為造父(型)變星,本身體積會膨脹收縮造成亮度周期性的變化.第一顆被描述的經典造父變星是在1784年.
上圖為一造父變星的亮度隨時間的周期變化圖,其中視星等的數值越小,亮度越高,則此變星亮度變化的周期、最亮時視星等,分別約是( )
A.5.5,3.7B.5.4,4.4C.6.5,3.7D.5.5,4.4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com