【題目】已知橢圓的左、右焦點(diǎn)為,,長軸端點(diǎn)為,,為橢圓中心,,斜率為的直線與橢圓交于不同的兩點(diǎn),這兩點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn).

1)求橢圓的方程;

2)若拋物線上存在兩個(gè)點(diǎn),,橢圓上存在兩個(gè)點(diǎn),,滿足,三點(diǎn)共線,,三點(diǎn)共線,且,求四邊形面積的最小值.

【答案】(1)(2)

【解析】

(1)由,可得,由于斜率為的直線與橢圓交于不同的兩點(diǎn),這兩點(diǎn)在軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),可知直線過原點(diǎn),表示出直線方程,可得直線與橢圓的一個(gè)交點(diǎn)坐標(biāo),代入橢圓中,可得到,的值,由此得到橢圓的方程。

(2)分類討論直線斜率存在與不存在的情況,當(dāng)斜率不存在時(shí),根據(jù)題意可得,,即可得到四邊形的面積,當(dāng)斜率存在時(shí),設(shè)出直線的點(diǎn)斜式方程以及直線的方程,將直線的方程與拋物線聯(lián)立方程,得到關(guān)于的一元二次方程,由弦長公式表示出,再聯(lián)立直線與橢圓的方程,得出的長,最后表示出四邊形面積關(guān)于斜率的表達(dá)式,利用基本不等式即可求出四邊形面積最小值。

解:(1)設(shè)橢圓方程為,

利用數(shù)量積運(yùn)算可得,可得,

直線的方程為,當(dāng)時(shí),

代入橢圓方程可得,

聯(lián)立解得,橢圓方程.

2)①當(dāng)直線的斜率不存在時(shí),直線的斜率為0,得到,

②當(dāng)直線的斜率存在時(shí),設(shè)直線方程為

與拋物線聯(lián)立得。

,,則,,

,

因?yàn)?/span>,所以直線的方程為

將直線與橢圓聯(lián)立,得,

,,則,,

所以,

所以四邊形面積,

,

,

所以,其最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為F,過點(diǎn)的直線lE交于A,B兩點(diǎn).當(dāng)l過點(diǎn)F時(shí),直線l的斜率為,當(dāng)l的斜率不存在時(shí),.

1)求橢圓E的方程.

2)以AB為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形所在平面與梯形所在平面互相垂直,且有,,.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,在平面直角坐標(biāo)系xOy中,平行于x軸且過點(diǎn)A(3,2)的入射光線 l1

被直線ly=x反射.反射光線l2y軸于B點(diǎn)C過點(diǎn)A且與l1, l2 都相切.

(1)l2所在直線的方程和圓C的方程;

(2)設(shè)分別是直線l和圓C上的動(dòng)點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是指懸浮在空氣中的空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)日均值在微克/立方米以下,空氣質(zhì)量為一級;在微克應(yīng)立方米微克立方米之間,空氣質(zhì)量為二級:在微克/立方米以上,空氣質(zhì)量為超標(biāo).從某市年全年每天的監(jiān)測數(shù)據(jù)中隨機(jī)地抽取天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如下表:

日均值

(微克/立方米)

頻數(shù)(天)

1)從這天的日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽出天,求恰有天空氣質(zhì)量達(dá)到一級的概率;

2)從這天的數(shù)據(jù)中任取天數(shù)據(jù),記表示抽到監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了了解不同年齡的人對一款智能家電的評價(jià),隨機(jī)選取了50名購買該家電的消費(fèi)者,讓他們根據(jù)實(shí)際使用體驗(yàn)進(jìn)行評分.

(Ⅰ)設(shè)消費(fèi)者的年齡為,對該款智能家電的評分為.若根據(jù)統(tǒng)計(jì)數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評分的方差為.求的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評分與年齡的相關(guān)性強(qiáng)弱.

(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評分劃分為“好評”和“差評”,整理得到如下數(shù)據(jù),請判斷是否有的把握認(rèn)為對該智能家電的評價(jià)與年齡有關(guān).

好評

差評

青年

8

16

中老年

20

6

附:線性回歸直線的斜率;相關(guān)系數(shù),獨(dú)立性檢驗(yàn)中的,其中.

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,垂直于以為直徑的圓所在的平面,點(diǎn)是圓周上異于,的任意一點(diǎn),則下列結(jié)論中正確的是(

平面

④平面平面

⑤平面平面

A.①②⑤B.②⑤C.②④⑤D.②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下結(jié)論正確的個(gè)數(shù)是(

①若數(shù)列中的最大項(xiàng)是第項(xiàng),則.

②在中,若,則為等腰直角三角形.

③設(shè)、分別為等差數(shù)列的前項(xiàng)和,若,則.

的內(nèi)角、、的對邊分別為、,若、、成等比數(shù)列,且,則.

⑤在中,、、分別是、所對邊,,則的取值范圍為.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案